scholarly journals In Vitro Activity Assays of Sputtered HAp Coatings with SiC Addition in Various Simulated Biological Fluids

Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 389 ◽  
Author(s):  
Alina Vlădescu ◽  
Anca Pârâu ◽  
Iulian Pană ◽  
Cosmin M. Cotruț ◽  
Lidia R. Constantin ◽  
...  

Considering the requirements of medical implantable devices, it is pointed out that biomaterials should play a more sophisticated, longer-term role in the customization and optimization of the material–tissue interface in order to ensure the best long-term clinical outcomes. The aim of this contribution was to assess the performance of silicon carbide–hydroxyapatite in various simulated biological fluids (Dulbecco’s modified Eagle’s medium (DMEM), simulated body fluid (SBF), and phosphate buffer solution (PBS)) through immersion assays for 21 days at 37 ± 0.5 °C and to evaluate the electrochemical behavior. The coatings were prepared on Ti6Al4V alloy substrates by magnetron sputtering method using two cathodes made of hydroxyapatite and silicon carbide (SiC). After immersion assays the coating’s surface was analyzed in terms of morphology, chemical and phase composition, and chemical bonds. According to the electrochemical behavior in the media investigated at 37 ± 0.5 °C, SiC addition inhibits the dissolution of the hydroxyapatite in DMEM acellular media. Furthermore, after adding SiC, the slow degradation of hydroxyapatite in PBS and SBF media as well as biomineralization in DMEM were observed.

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 786 ◽  
Author(s):  
Oscar Gil-Castell ◽  
José David Badia ◽  
Jordi Bou ◽  
Amparo Ribes-Greus

The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °C. The scaffolds for short-time applications were PLGA and PDO, in which the molar mass diminished down to 20% in a 20–30 days lifespan. While PDO developed crystallinity that prevented the geometry of the fibres, those of PLGA coalesced and collapsed. The scaffolds for long-term applications were PCL and PHB, in which the molar mass followed a progressive decrease, reaching values of 10% for PCL and almost 50% for PHB after 650 days of immersion. This resistant pattern was mainly ascribed to the stability of the crystalline domains of the fibres, in which the diameters remained almost unaffected. From the perspective of an adequate balance between the durability and degradation, this study may serve technologists as a reference point to design polyester-based scaffolds for biomedical applications.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1074 ◽  
Author(s):  
Yun Zhao ◽  
Hui Liang ◽  
Shiqiang Zhang ◽  
Shengwei Qu ◽  
Yue Jiang ◽  
...  

Biodegradable devices for medical applications should be with an appropriate degradation rate for satisfying the various requirements of bone healing. In this study, composite materials of polylactic acid (PLA)/stearic acid-modified magnesium oxide (MgO) with a 1 wt% were prepared through blending extrusion, and the effects of the MgO shapes on the composites’ properties in in vitro and in vivo degradation were investigated. The results showed that the long-term degradation behaviors of the composite samples depended significantly on the filler shape. The degradation of the composites is accelerated by the increase in the water uptake rate of the PLA matrix and the composite containing the MgO nanoparticles was influenced more severely by the enhanced hydrophilicity. Furthermore, the pH value of the phosphate buffer solution (PBS) was obviously regulated by the dissolution of MgO through the neutralization of the acidic product of the PLA degradation. In addition, the improvement of the in vivo degrading process of the composite illustrated that the PLA/MgO materials can effectively regulate the degradation of the PLA matrix as well as raise its bioactivity, indicating the composites for utilization as a biomedical material matching the different requirements for bone-related repair.


1983 ◽  
Vol 29 (9) ◽  
pp. 1104-1109 ◽  
Author(s):  
D. K. Arora ◽  
A. B. Filonow ◽  
J. L. Lockwood

Erwinia herbicola, Pseudomonas fluorescens, and P. putida were strongly attracted in vitro to substances exuded by conidia of Cochliobolus victoriae and sclerotia of Macrophomina phaseolina, but not to phosphate buffer solution. Numbers of bacteria attracted to propagules of C. victoriae or M. phaseolina in an unsterilized sandy loam soil were significantly (P = 0.05) greater than background populations occurring in soil saturated with buffer. Chemotactic response was greater to C. victoriae than to M. phaseolina both in vitro and in soil. Results suggest that living fungal propagules may act as attractants for motile bacteria in soil.


2008 ◽  
Vol 47-50 ◽  
pp. 1302-1306 ◽  
Author(s):  
John A. Nychka ◽  
Ding Li

We report our observations concerning the time evolution of surface morphology occurring during the in vitro immersion of bioactive glass surfaces in contact with phosphate buffer solution. We compare regions under intentionally produced residual stresses via micro-indentation to those where no indentation was performed. The sign of the residual stress is shown to be important for predicting dissolution behaviour; compression retards dissolution, whereas tension enhances dissolution. We analyze our results with a simple model for the work of bond dissociation. We report that a highly constrained residual compressive stress state, such as in an indent, leads to a work deficit in comparison to tension, which accounts for the slower dissolution rate of compressed bioactive glass. Such a mechanochemical effect suggests that the presence of residual stresses from the manufacture of biomedical implants and devices could lead to accelerated or delayed dissolution and that careful control of residual stresses should be sought for predictable performance in dissolvable materials.


2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Shafiyah Pondi ◽  
Jon Efendi ◽  
Ho Chin Siong ◽  
Lai Sin Yuan ◽  
Sheela Chandren ◽  
...  

The drug-delivery field has been an attractive as well as challenging area for research. With the emerging of new formulated drugs and pharmaceutical compounds, development of good drug-delivery system (DDS) is crucially required. This study aims to utilize albumin as the drug template in silica/albumin/drug (S/A/D) system. Prior to designing this system, the interaction between silica and albumin was investigated. It is hypothesized that high interaction between silica and albumin may result in slower drug release over time, which is preferred for a good DDS. Silica and albumin (S/A) materials were prepared by using fumed silica and tetraethyl orthosilicate (TEOS) as the silica precursors. Three different S/A samples were prepared; fumed silica with albumin (FS/A), fumed silica with pre-treated albumin by sodium borohydrate (FS/A-N), and silica sol (TEOS) with albumin (SS/A). In-vitro release of albumin in phosphate buffer solution (pH 7) was carried out to examine the interaction between albumin and silica. The concentration of albumin was detected at 280 nm by UV-visible spectrophotometer. All samples were characterized by diffuse reflectance-UV-visible spectrophotometer (DR-UV), Fourier transform infrared spectrophotometer (FTIR) dan thermogravimetric-differential thermal analysis (TG-DTA). DR-UV results show that SS/A exhibited the lowest absorption intensity at 280 nm, which indicates better interaction between silica and albumin. This result was supported by the presence of Si-O stretching band of silanol at 952 cm-1 from the FTIR spectrum. Release study of albumin demonstrated that the release of albumin from SS/A was slowest compared to those of FS/A and FS/A-N. 


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Chunxue Zhang ◽  
Xiaoyan Yuan ◽  
Lili Wu ◽  
Jing Sheng

AbstractSubmicron poly(vinyl alcohol) (PVA) fibre mats embedded with Aspirin and bovine serum albumin (BSA) were prepared by electrospinning of their aqueous solutions. Fibre morphology was investigated by scanning electron microscopy. The composition of the fibre mats was characterized by Fourier transform IR spectroscopy and X-ray photoelectron spectroscopy. The in vitro drug release was investigated by immersing the fibre mats in phosphate buffer solution at 37°C. Results indicated that the morphology of fibre mats was influenced by the amount of drug, and more beaded and irregularly shaped fibres were found with increasing drug amounts. There were drug molecules distributed on the surface of the PVA fibres. Studies of in vitro drug release showed that both Aspirin and BSA were released more quickly from PVA fibre mats than from PVA films because of the large surface area and high porosity of the fibre mats.


1978 ◽  
Vol 34 (1) ◽  
pp. 159-171
Author(s):  
A. Gyevai ◽  
P.J. Chapple ◽  
W.H. Douglas

Hypothalamic aggregate cultures were developed from hypothalami taken from rat embryos at 17–19 days gestation. The aggregate cultures exhibited a prominent morphological differentiation during 3–4 weeks in culture. The fine structure of the synapses formed in the aggregates resembled synapses in tha adult animal. During synaptogenesis the aggregates spontaneously release prostaglandin E2 (PGE2). The amount of PGE2 released in the media was reversed upon the morphological differentiation of the hypothalamic cultures. Media containing a higher PGE2 concentration increased the extracellular prolactin accumulation in monolayer cultures developed from adult rat hypophysis.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 826 ◽  
Author(s):  
Jayasingh Anita Lett ◽  
Suresh Sagadevan ◽  
Joseph Joyce Prabhakar ◽  
Nor Aliya Hamizi ◽  
Irfan Anjum Badruddin ◽  
...  

Infections after bone reconstructive surgery become an authentic therapeutic and economic issue when it comes to a modern health care system. In general; infected bone defects are regarded as contraindications for bone grafting. Since the pathogens develop a biofilm on the inner surface of the bone; local delivery of antibiotics becomes more important. The present work focuses on the synthesis of Mesoporous Hydroxyapatite (MPHAP) loaded with drug Vancomycin (Van) and to investigate its loading and leaching ability in phosphate buffer solution (PBS), to be used for post-operative infections. The effect of pore size on MPHAP was analyzed using different fatty acids as organic modifiers. The impacts of various fatty acids chain length on the morphology and pore size were studied. A simple impregnation technique with optimized conditions ensured a high antibiotic loading (up to 0.476 + 0.0135 mg/mL), with a complete in vitro release obtained within 50 h.


2010 ◽  
Vol 660-661 ◽  
pp. 617-622 ◽  
Author(s):  
Rogério Albuquerque Marques ◽  
Adonis M. Saliba-Silva ◽  
Sizue Ota Rogero ◽  
Maria de Fátima Montemor ◽  
Isolda Costa

- Ferromagnetic stainless steels (SS) produced by powder metallurgy (PM) techniques have been investigated as potential candidates for dental prosthesis applications in replacement of magnetic attachments made of noble and expensive alloys. Two SS were investigated: SS 17-4 PH produced by powder injection (PIM) and SS PM2000 obtained by mechanical alloying. In vitro cytotoxicity analysis of the two SS showed no cytotoxic effects. The magnetic retention force of both tested SS was also evaluated and they were comparable to noble commercially available material that is in use at the moment. The corrosion resistance of both SS was evaluated by electrochemical techniques in sodium phosphate buffer solution (PBS) at 37°C. The AISI 316L SS was also tested under the same conditions for comparison reasons. SS samples tested showed passive behaviour in the electrolyte, but they also presented susceptibility to pitting. The best pitting resistance was associated to the PM2000 whereas the 17-4PH PIM showed the highest pitting susceptibility among the tested steels. The results pointed out that the PM2000 SS might be considered a potential candidate for substitution of high cost magnetic alloys used in dental prosthesis.


1998 ◽  
Vol 22 ◽  
pp. 323-325
Author(s):  
M. C. Hickey ◽  
A. P. Moloney ◽  
M. O'Connell ◽  
J. Connolly

In vitro techniques have been developed to facilitate the measurement of nutritional variability amongst food. Many kinetic studies have utilized the modified Tilley and Terry technique, with long-term incubations carried out in Erlenmeyer flasks. These are inefficient in utilizing incubator space for large scale studies. However substitution of Erlenmeyer flasks with tubes as fermentation units leaves the system prone to ‘bridging’, the formation of dense mats of forage particles by entrapped gas, above the level of the media in a fermentation unit. The objective of experiment 1 was to establish an effective incubation technique to eliminate the random variation caused by bridging.


Sign in / Sign up

Export Citation Format

Share Document