scholarly journals Influence of Water Concentration on Its Mobility in Matrimid®

Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 466
Author(s):  
Andrey V. Petrov ◽  
Michael A. Smirnov ◽  
Maria P. Sokolova ◽  
Alexander M. Toikka

Mobility of water in polyheteroarylene (Matrimid®) was simulated at 300 K and different concentrations of water (0.5 wt.%–3 wt.%). Parameters of anomalous diffusion were calculated from molecular dynamics simulations on the base of mean square displacements of water molecules. It was found that mobility of water has nonmonotonic dependence on its concentration. Lower diffusion rates at concentrations below than 1 wt.% can be attributed to the sorption of water onto the polar groups of polymer (sorption sites). Decreasing of diffusion rate with increasing of water concentration is due to the formation of clusters of water molecules, which hampers the penetration of water between polymer chains.

2020 ◽  
Vol 234 (7-9) ◽  
pp. 1311-1327 ◽  
Author(s):  
Dennis Gratzfeld ◽  
Juliane Heitkämper ◽  
Julien Debailleul ◽  
Matthias Olzmann

AbstractThe influence of water molecules on the kinetics of urea condensation reactions was studied with high-level quantum chemical methods and statistical rate theory. The study focuses on the production of biuret, triuret, and cyanuric acid from urea because of their relevance as unwanted byproducts in the urea-based selective catalytic reduction (urea-SCR) exhaust after treatment of Diesel engines. In order to characterize the potential energy surfaces and molecular reaction pathways, calculations with explicitly-correlated coupled-cluster methods were performed. It turned out that the reactions proceed via pre-reactive complexes and the inclusion of one or two water molecules into the condensation mechanisms leads to a decrease of the energy barriers. This effect is particularly pronounced in the production of biuret. Due to the pre-reactive equilibria, the rates of the overall reactions can increase or decrease by incorporating water into the mechanism, depending on the temperature and water concentration. Under the conditions of urea-SCR, the studied reactions are too slow to contribute to the observed byproduct formation.


2019 ◽  
Vol 6 (4) ◽  
pp. 556-563 ◽  
Author(s):  
Bin Zhang ◽  
Jianting Kang ◽  
Tianhe Kang ◽  
Guanxian Kang ◽  
Guofei Zhao

Abstract Understanding the interaction of CH4 with kaolinite is significant for researchers in the fields of coalbed CH4 and shale gas. The diffusion behaviors of CH4 in kaolinite with water contents ranging from 0 to 5 wt% have been analyzed by molecular dynamics simulations. The results of the simulations indicate that CH4 molecules can jump between adjacent holes in the kaolinite matrix. CH4 diffusion coefficient was very low (3.28 × 10−9 m2/s) and increased linearly with the increasing of water content. As the water content decreased, the value of radial distribution function first peak between CH4 and oxygen was larger, meaning that with lower water content, the interaction energy between CH4 and oxygen in kaolinite is stronger. The interaction between CH4 and water is linearly positively correlated with water content, in contrast, the interaction energy between kaolinite and water as well as between kaolinite and CH4 decreased linearly with increasing water content. On the other hand, the diffusion of CH4 molecules adsorbed on the surfaces also can be accelerated by the fast diffusion of water molecules in the middle micropore of the kaolinite.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 123
Author(s):  
Bin Cao ◽  
Ji-Wei Dong ◽  
Ming-He Chi

Water impurity is the essential factor of reducing the insulation performance of transformer oil, which directly determines the operating safety and life of a transformer. Molecular dynamics simulations and first-principles electronic-structure calculations are employed to study the diffusion behavior of water molecules and the electrical breakdown mechanism of transformer oil containing water impurities. The molecular dynamics of an oil-water micro-system model demonstrates that the increase of aging acid concentration will exponentially expedite thermal diffusion of water molecules. Density of states (DOS) for a local region model of transformer oil containing water molecules indicates that water molecules can introduce unoccupied localized electron-states with energy levels close to the conduction band minimum of transformer oil, which makes water molecules capable of capturing electrons and transforming them into water ions during thermal diffusion. Subsequently, under a high electric field, water ions collide and impact on oil molecules to break the molecular chain of transformer oil, engendering carbonized components that introduce a conduction electronic-band in the band-gap of oil molecules as a manifestation of forming a conductive region in transformer oil. The conduction channel composed of carbonized components will be eventually formed, connecting two electrodes, with the carbonized components developing rapidly under the impact of water ions, based on which a large number of electron carriers will be produced similar to “avalanche” discharge, leading to an electrical breakdown of transformer oil insulation. The water impurity in oil, as the key factor for forming the carbonized conducting channel, initiates the electric breakdown process of transformer oil, which is dominated by thermal diffusion of water molecules. The increase of aging acid concentration will significantly promote the thermal diffusion of water impurities and the formation of an initial conducting channel, accounting for the degradation in dielectric strength of insulating oil containing water impurities after long-term operation of the transformer.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Miraslau L. Barabash ◽  
William A. T. Gibby ◽  
Carlo Guardiani ◽  
Alex Smolyanitsky ◽  
Dmitry G. Luchinsky ◽  
...  

AbstractIn order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns.


Soft Matter ◽  
2021 ◽  
Author(s):  
Garima Rani ◽  
Kenichi Kuroda ◽  
Satyavani Vemparala

Using atomistic molecular dynamics simulations, we study the interaction of ternary methacrylate polymers, composed of charged cationic, hydrophobic and neutral polar groups, with model bacterial membrane. Our simulation data shows...


Biophysica ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 279-296
Author(s):  
Federico Fogolari ◽  
Gennaro Esposito

Estimation of solvent entropy from equilibrium molecular dynamics simulations is a long-standing problem in statistical mechanics. In recent years, methods that estimate entropy using k-th nearest neighbours (kNN) have been applied to internal degrees of freedom in biomolecular simulations, and for the rigorous computation of positional-orientational entropy of one and two molecules. The mutual information expansion (MIE) and the maximum information spanning tree (MIST) methods were proposed and used to deal with a large number of non-independent degrees of freedom, providing estimates or bounds on the global entropy, thus complementing the kNN method. The application of the combination of such methods to solvent molecules appears problematic because of the indistinguishability of molecules and of their symmetric parts. All indistiguishable molecules span the same global conformational volume, making application of MIE and MIST methods difficult. Here, we address the problem of indistinguishability by relabeling water molecules in such a way that each water molecule spans only a local region throughout the simulation. Then, we work out approximations and show how to compute the single-molecule entropy for the system of relabeled molecules. The results suggest that relabeling water molecules is promising for computation of solvation entropy.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 64
Author(s):  
Abhishek Sachan ◽  
Mickaël Castro ◽  
Veena Choudhary ◽  
Jean-Francois Feller

The anticipated diagnosis of various fatal diseases from the analysis of volatile organic compounds (VOC) biomarkers of the volatolome is the object of very dynamic research. Nanocomposite-based quantum resistive vapor sensors (vQRS) exhibit strong advantages in the detection of biomarkers, as they can operate at room temperature with low consumption and sub ppm (part per million) sensitivity. However, to meet this application they need to detect some ppm or less amounts of biomarkers in patients' breath, skin, or urine in complex blends of numerous VOC, most of the time hindered by a huge amount of water molecules. Therefore, it is crucial to analyze the effects of moisture on the chemo-resistive sensing behavior of carbon nanotubes based vQRS. We show that in the presence of water molecules, the sensors cannot detect the right amount of VOC molecules present in their environment. These perturbations of the detection mechanism are found to depend on the chemical interactions between water and other VOC molecules, but also on their competitive absorption on sensors receptive sites, located at the nanojunctions of the conductive architecture. This complex phenomenon studied with down to 12.5 ppm of acetone, ethanol, butanone, toluene, and cyclohexane mixed with 100 ppm of water was worth to investigate in the prospect of future developments of devices analysing real breath samples in which water can reach a concentration of 6%.


2015 ◽  
Vol 71 (3) ◽  
pp. 222-228 ◽  
Author(s):  
Mohamed Abdellatif Bensegueni ◽  
Aouatef Cherouana ◽  
Slimane Dahaoui

Two alkaline earth–tetrazole compounds, namelycatena-poly[[[triaquamagnesium(II)]-μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N5] hemi{bis[μ-5,5′-(azanediyl)ditetrazolato-κ3N1,N1′:N2]bis[triaquamagnesium(II)]} monohydrate], {[Mg(C2HN9)(H2O)3][Mg2(C2HN9)2(H2O)6]0.5·H2O}n, (I), and bis[5-(pyrazin-2-yl)tetrazolate] hexaaquamagnesium(II), (C5H3N6)[Mg(H2O)6], (II), have been prepared under hydrothermal conditions. Compound (I) is a mixed dimer–polymer based on magnesium ion centres and can be regarded as the first example of a magnesium–tetrazolate polymer in the crystalline form. The structure shows a complex three-dimensional hydrogen-bonded network that involves magnesium–tetrazolate dimers, solvent water molecules and one-dimensional magnesium–tetrazolate polymeric chains. The intrinsic cohesion in the polymer chains is ensured by N—H...N hydrogen bonds, which formR22(7) rings, thus reinforcing the propagation of the polymer chain along theaaxis. The crystal structure of magnesium tetrazole salt (II) reveals a mixed ribbon of hydrogen-bonded rings, of typesR22(7),R22(9) andR24(10), running along thecaxis, which are linked byR24(16) rings, generating a 4,8-cflunet.


Sign in / Sign up

Export Citation Format

Share Document