scholarly journals New Functions of Low-Molecular-Weight Hyaluronic Acid on Epidermis Filaggrin Production and Degradation

Cosmetics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Moe Hashimoto ◽  
Kazuhisa Maeda

Hyaluronic acid (HA) is a high-molecular-weight polysaccharide with high moisturizing power. It is composed of repeating disaccharides of N-acetyl-D-glucosamine and D-glucuronic acid. Low-molecular-weight hyaluronan (LMHA) is obtained by changing the molecular weight or modifying the functional groups of HA and is commonly used together with HA in cosmetics. The objective of this study was to determine whether LMHA promotes the synthesis of filaggrin (FLG). We also investigated whether LMHA activates FLG-degrading enzymes. Three-dimensional (3D) models of the human epidermis were cultured with LMHA. Real-time PCR was used to quantify the mRNA levels of profilaggrin (proFLG), involucrin (IVL), and FLG-degrading enzymes. FLG protein levels were measured by fluorescent antibody staining and Western blotting. The mRNA was quantified using a 3D epidermis model, and it was observed that the mRNA levels of proFLG, IVL, caspase-14 (CASP14), and bleomycin hydrolase were increased by the application of LMHA. Immunofluorescence results showed an increase in FLG proteins, and results from experiments using 3D epidermis models showed that LMHA increased the activity of CASP14. This suggests that the topical application of LMHA would result in an increase in natural moisturizing factor and promote moisturization of the stratum corneum.

2000 ◽  
Vol 279 (6) ◽  
pp. R2329-R2335 ◽  
Author(s):  
Paul Trayhurn ◽  
Jacqueline S. Duncan ◽  
Anne M. Wood ◽  
John H. Beattie

White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese ( ob/ ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a β3-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.


2016 ◽  
Vol 19 (1) ◽  
pp. 71-76 ◽  
Author(s):  
L Koç Öztürk ◽  
A Yarat ◽  
S Akyuz ◽  
H Furuncuoglu ◽  
K Ulucan

ABSTRACTHuman low-molecular weight salivary mucin (MUC7) is a small, secreted glycoprotein coded by MUC7. In the oral cavity, they inhibit the colonization of oral bacteria, including cariogenic ones, by masking their surface adhesions, thus helping saliva to avoid dental caries. The N-terminal domain is important for low-molecular weight (MG2) mucins to contact with oral microorganisms. In this study, we aimed to identify the N-terminal coding region of the MUC7 gene between individuals with and without caries. Forty-four healthy dental students were enrolled in this study; 24 of them were classified to have caries [decayed, missing, filled-teeth (DMFT) = 5.6] according to the World Health Organization (WHO) criteria, and 20 of them were caries-free (DMFT = 0). Simplified oral hygiene index (OHI-S) and gingival index (GI) were used to determine the oral hygiene and gingival conditions. Total protein levels and salivary total protein levels and salivary buffer capacity (SBC) were determined by Lowry and Ericsson methods. DNA was extracted from peripheral blood cells of all the participants and genotyping was carried out by a polymerase chain reaction (PCR)-sequencing method. No statistical differences were found between two groups in the terms of salivary parameters, oral hygiene and gingival conditions. We detected one common single nucleotide polymorphism (SNP) that leads to a change of asparagine to lysine at codon 80. This substitution was found in 29.0 and 40.0%, respectively, of the groups with and without caries. No other sequence variations were detected. The SNP found in this study may be a specific polymorphism affecting the Turkish population. Further studies with extended numbers are necessary in order to clarify this finding.


2021 ◽  
Vol 85 (3) ◽  
pp. AB184
Author(s):  
Alessandra Romiti ◽  
Priscila Correia ◽  
José Euzébio Gonçalves Junior ◽  
Beatriz Sant’Anna ◽  
Caroline Le Floc

Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 745
Author(s):  
Shuoqi Jiang ◽  
Zhuangwei Zhang ◽  
FangFang Huang ◽  
Zuisu Yang ◽  
Fangmiao Yu ◽  
...  

The major component of the Solenocera crassicornis head protein hydrolysates-fraction 1 (SCHPs-F1) are low molecular weight peptides (MW < 1 kDa). In this study, we investigated the potential renoprotective effects of SCHPs-F1 in a cyclophosphamide (CTX) toxicity mouse model. In brief, 40 male mice were randomly divided into 5 groups and received either saline or 80 mg/kg body weight (BW) CTX by intraperitoneal injection for 5 days, followed by either saline or SCHPs-F1 (100, 200, and 400 mg/kg BW) by intragastric administration for 15 days. SCHPs-F1 treatment significantly reversed the CTX-induced decreases in the levels of blood urea nitrogen (BUN), creatinine (CRE), and cytochrome P450 (CYP450), as well as the renal histological lesions. Furthermore, the results indicated that SCHPs-F1 potentially alleviated CTX-induced nephrotoxicity through mitigating inflammatory responses, oxidative stress, and apoptosis status of the kidneys, as evidenced by decreased levels of malondialdehyde (MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ and increased levels of total antioxidant capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Moreover, overexpression of pro-apoptotic proteins pair B-cell lymphoma-2 (Bcl-2)-associated X (Bax)/Bcl-2, cysteinyl aspartate specific proteinase (caspase)-3 and caspase-9 in renal tissues were suppressed by treatment with SCHPs-F1. In addition, the protein levels of the antioxidant factor nuclear factor erythroid-2 related factor 2 (Nrf2) and the expression levels of its downstream target genes heme-oxygenase (HO-1), glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H dehydrogenase (quinone) 1 (NQO-1) were stimulated by treatment with SCHPs-F1 in the CTX-induced renal injury model. Taken together, our data suggested that SCHPs-F1 could provide a novel potential strategy in mitigating the nephrotoxicity caused by CTX.


1995 ◽  
Vol 269 (6) ◽  
pp. H2124-H2140 ◽  
Author(s):  
B. M. Fu ◽  
F. E. Curry ◽  
S. Weinbaum

We developed a time-dependent diffusion model for analyzing the concentration profiles of low-molecular-weight tracers in the interendothelial clefts of the capillary wall that takes into account the three-dimensional time-dependent filling of the surrounding tissue space. The model provides a connecting link between two methods to investigate transvascular exchange: electron-microscopic experiments to study the time-dependent wake formed by low-molecular-weight tracers (such as lanthanum nitrate) on the tissue side of the junction strand discontinuities in the interendothelial cleft of frog mesentery capillaries (R. H. Adamson and C. C. Michel. J. Physiol. Lond. 466: 303-327, 1993) and confocal-microscopic experiments to measure the spread of low-molecular-weight fluorescent tracers in the tissue space surrounding these microvessels (R. H. Adamson, J. F. Lenz, and F. E. Curry, Microcirculation 1: 251-265, 1994). We show that the interpretation of the presence of tracer as an all-or-none indication of a pathway across the junctional strand is likely to be incorrect for small solutes. Large-pore pathways, in which the local tracer flux densities are high, reach a threshold concentration for detection and are likely to be detected after relatively short perfusion times, whereas distributed small-pore pathways may not be detected until the tissue concentrations surrounding the entire vessel approach threshold concentrations. The analysis using this approach supports the hypothesis advanced by Fu et al. (J. Biomech. Eng. 116: 502-513, 1994) that the principal pathways for water and solutes of < 1.0 nm diameter across the interendothelial cleft may be different and suggests new experiments to test this hypothesis.


2020 ◽  
Vol 4 (11) ◽  
pp. 2000122
Author(s):  
Sara Amorim ◽  
Diana Soares da Costa ◽  
Iva Pashkuleva ◽  
Celso A. Reis ◽  
Rui L. Reis ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Mohammad Hasan Bahrami ◽  
Seyed Ahmad Raeissadat ◽  
Mohsen Cheraghi ◽  
Shahram Rahimi-Dehgolan ◽  
Adel Ebrahimpour

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1094 ◽  
Author(s):  
Hsin-Ta Wang ◽  
Po-Chien Chou ◽  
Ping-Han Wu ◽  
Chi-Ming Lee ◽  
Kang-Hsin Fan ◽  
...  

Low-molecular-weight hyaluronic acid (LMWHA) was integrated with superparamagnetic Fe3O4 nanoparticles (Fe3O4 NPs). The size distribution, zeta potential, viscosity, thermogravimetric and paramagnetic properties of the LMWHA-Fe3O4 NPs were systematically examined. For cellular experiments, MCF7 breast cancer cell line was carried out. In addition, the cell targeting ability and characteristics of the LMWHA-Fe3O4 NPs for MCF7 breast cancer cells were analyzed using the thiocyanate method and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The experimental results showed that the LMWHA-Fe3O4 NPs were not only easily injectable due to their low viscosity, but also exhibited a significant superparamagnetic property. Furthermore, the in vitro assay results showed that the NPs had negligible cytotoxicity and exhibited a good cancer cell targeting ability. Overall, the results therefore suggest that the LMWHA-Fe3O4 NPs have considerable potential as an injectable agent for enhanced magnetic resonance imaging (MRI) and/or hyperthermia treatment in breast cancer therapy.


2020 ◽  
Vol 21 (10) ◽  
pp. 3516 ◽  
Author(s):  
Takashi Kojima ◽  
Taeko Nagata ◽  
Haruka Kudo ◽  
Wolfgang G. K. Müller-Lierheim ◽  
Gysbert-Botho van Setten ◽  
...  

Hyaluronic acid (HA) ophthalmic solution is widely used in dry eye treatment worldwide. However, there are no reports comparing the dry eye treatment effects of high molecular weight HA with low molecular weight HA. Sixty eight-week-old C57BL/6 mice were assigned to the following 6 groups and exposed to environmental dry eye stress (EDES) that mimics office work environment: (1) 0.1% low molecular weight HA (LMWHA) eye drops, (2) 0.3% LMWHA eye drops, (3) 3% diquafosol sodium (DQ) eye drops, (4) 0.15% high molecular weight HA (HMWHA) eye drops, (5) no treatment with exposure to EDES (EDES+/Treatment−), and (6) no treatment without exposure to EDES (EDES−/Treatment−). After EDES, the HMWHA group had significantly longer break-up time (BUT) than the 0.1%, 0.3% LMWHA groups and the DQ group. After EDES, the HMWHA group had significantly lower lissamine green staining scores than the LMWHA and DQ groups. Subepithelial presumed dendritic cell density in the HMWHA group was significantly lower than the EDES+/Treatment− group. After EDES exposure, Conjunctival Muc5AC mRNA expression in the HMWHA group was significantly higher than the 0.1 and 0.3% LMWHA groups. Ophthalmic HMWHA solution may have a better dry eye treatment effect than LMWHA or DQ solution, owing to its anti-inflammatory effect.


Sign in / Sign up

Export Citation Format

Share Document