scholarly journals Dynamic and Photonic Properties of Field-Induced Gratings in Flexoelectric LC Layers

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 894
Author(s):  
Serguei P. Palto

For LCs with a non-zero flexoelectric coefficient difference (e1-e3) and low dielectric anisotropy, electric fields exceeding certain threshold values result in transitions from the homogeneous planarly aligned state to the spatially periodic one. Field-induced grating is characterized by rotation of the LC director about the alignment axis with the wavevector of the grating oriented perpendicular to the initial alignment direction. The rotation sign is defined by both the electric field vector and the sign of the (e1-e3) difference. The wavenumber characterizing the field-induced periodicity is increased linearly with the applied voltage starting from a threshold value of about p/d, where d is the thickness of the layer. Two sets of properties of the field-induced gratings are studied in this paper using numerical simulations: (i) the dynamics of the grating appearance and relaxation; (ii) the transmittance and reflectance spectra, showing photonic stop bands in the waveguide mode. It is shown that under ideal conditions, the characteristic time of formation for a spatially limited grating is determined by the amplitude of the electric voltage and the size of the grating itself in the direction of the wave vector. For large gratings, this time can be drastically reduced via spatial modulation of the LC anchoring on one of the alignment surfaces. In the last case, the time is defined not by the grating size, but the period of the spatial modulation of the anchoring. The spectral structure of the field-induced stop bands and their use in LC photonics are also discussed.

2013 ◽  
Vol 21 (2) ◽  
Author(s):  
G. Derfel ◽  
M. Buczkowska

AbstractDeformations of homeotropically aligned flexoelectric nematic layers induced by dc electric fields were simulated numerically. Two different anchoring strengths on the limiting surfaces were assumed. Nematic material was characterised by negative dielectric anisotropy. Both signs of the sum of flexoelectric coefficients were taken into account. The electric properties of the layer were described in terms of a weak electrolyte model. Mobility of cations was assumed to be one order of magnitude lower than that of anions. Quasi-blocking electrode contacts were assumed. The threshold voltages for deformations were determined by means of calculations of the phase difference Φ between ordinary and extraordinary light rays passing through a layer placed between crossed polarisers. The threshold values depended on the polarity of the bias voltage U. When the threshold value was exceeded, the phase difference increased with the voltage. Two different Φ(U/Uthreshold) dependencies for the two polarities of the voltage were found for each layer if the nematic possessed the flexoelectric properties. The possibility of using this effect to detect the flexoelectricity in the nematic was explored by simulated experiments. The effectiveness of the proposed method is discussed.


2018 ◽  
Vol 9 ◽  
pp. 1544-1549 ◽  
Author(s):  
Margarita A Kurochkina ◽  
Elena A Konshina ◽  
Daria Khmelevskaia

We have experimentally investigated the effect of the reorientation of a nematic liquid crystal (LC) in an electric field on the photoluminescence (PL) of CdSe/ZnS semiconductor quantum dots (QDs). To the LC with positive dielectric anisotropy, 1 wt % QDs with a core diameter of 5 nm was added. We compared the change of PL intensity and decay times of QDs in LC cells with initially planar or vertically orientated molecules, i.e., in active or passive LC matrices. The PL intensity of the QDs increases four-fold in the active LC matrix and only 1.6-fold in the passive LC matrix without reorientation of the LC molecules. With increasing electric field strength, the quenching of QDs luminescence occurred in the active LC matrix, while the PL intensity did not change in the passive LC matrix. The change in the decay time with increasing electric field strength was similar to the behavior of the PL intensity. The observed buildup in the QDs luminescence can be associated with the transfer of energy from LC molecules to QDs. In a confocal microscope, we observed the increase of particle size and the redistribution of particles in the active LC matrix with the change of the electric field strength. At the same time, no significant changes occurred in the passive LC matrix. With the reorientation of LC molecules from the planar in vertical position in the LC active matrix, quenching of QD luminescence and an increase of the ion current took place simultaneously. The obtained results are interesting for controlling the PL intensity of semiconductor QDs in liquid crystals by the application of electric fields.


2000 ◽  
Vol 203 (21) ◽  
pp. 3279-3287 ◽  
Author(s):  
M.E. Castello ◽  
P.A. Aguilera ◽  
O. Trujillo-Cenoz ◽  
A.A. Caputi

This paper describes the peripheral mechanisms involved in signal processing of self- and conspecific-generated electric fields by the electric fish Gymnotus carapo. The distribution of the different types of tuberous electroreceptor and the occurrence of particular electric field patterns close to the body of the fish were studied. The density of tuberous electroreceptors was found to be maximal on the jaw (foveal region) and very high on the dorsal region of the snout (parafoveal region), decaying caudally. Tuberous type II electroreceptors were much more abundant than type I electroreceptors. Type I electroreceptors occurred exclusively on the head and rostral trunk regions, while type II electroreceptors were found along as much as 90 % of the fish. Electrophysiological data indicated that conspecific- and self-generated electric currents are ‘funnelled’ by the high conductivity and geometry of the body of the fish. These currents are concentrated at the peri-oral zone, where most electroreceptors are located. Moreover, within this region, field vector directions were collimated, constituting the most efficient stimulus for electroreceptors. It can be concluded that the passive properties of the fish tissue represent a pre-receptor device that enhances exafferent and reafferent electrical signals at the fovea-parafoveal region.


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 275 ◽  
Author(s):  
Noureddine Bennis ◽  
Jakub Herman ◽  
Aleksandra Kalbarczyk ◽  
Przemysław Kula ◽  
Leszek R. Jaroszewicz

Liquid crystals act on the amplitude and the phase of a wave front under applied electric fields. Ordinary LCs are known as field induced birefringence, thus both phase and amplitude modulation strongly depend on the voltage controllable molecular tilt. In this work we present electrooptical properties of novel liquid crystal (LC) mixture with frequency tunable capabilities from 100Hz to 10 KHz at constant applied voltage. The frequency tunability of presented mixtures shown here came from composition of three different families of rodlike liquid crystals. Dielectric measurements are reported for the compounds constituting frequency-controlled birefringence liquid crystal. Characterization protocols allowing the optimum classification of different components of this mixture, paying attention to all relevant parameters such as anisotropic polarizability, dielectric anisotropy, and dipole moment are presented.


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 262 ◽  
Author(s):  
Alex V. Zakharov ◽  
Izabela Sliwa

The illustrative description of the field-induced peculiarities of the director reorientation in the microsized nematic volumes under the effect of crossed magnetic B and electric E fields have been proposed. The most interesting feature of such configuration is that the nematic phase becomes unstable after applying the strong E . The theoretical analysis of the reorientational dynamics of the director field provides an evidence for the appearance of the spatially periodic patterns in response to applied large E directed at an angle α to B . The feature of this approach is that the periodic distortions arise spontaneously from a homogeneously aligned nematic sample that ultimately induces a faster response than in the uniform mode. The nonuniform rotational modes involve additional internal elastic distortions of the conservative nematic system and, as a result, these deformations decrease of the viscous contribution U vis to the total energy U of the nematic phase. In turn, that decreasing of U vis leads to decrease of the effective rotational viscosity coefficient γ eff ( α ) . That is, a lower value of γ eff ( α ) , which is less than one in the bulk nematic phase, gives the less relaxation time τ on ( α ) ∼ γ eff ( α ) , when α is bigger than the threshold value α th . The results obtained by Deuterium NMR spectroscopy confirm theoretically obtained dependencies of τ on ( α ) on α .


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1051 ◽  
Author(s):  
Chuen-Lin Tien ◽  
Rong-Ji Lin ◽  
Chi-Chung Kang ◽  
Bing-Yau Huang ◽  
Chie-Tong Kuo ◽  
...  

This research applies the non-linear effect of azo dye-doped liquid crystal materials to develop a small, simple, and adjustable beam-splitting component with grating-like electrodes. Due to the dielectric anisotropy and optical birefringence of nematic liquid crystals, the director of the liquid crystal molecules can be reoriented by applying external electric fields, causing a periodic distribution of refractive indices and resulting in a diffraction phenomenon when a linearly polarized light is introduced. The study also discusses the difference in the refractive index (Δn), the concentration of azo dye, and the rising constant depending on the diffraction signals. The experimental results show that first-order diffraction efficiency can reach ~18% with 0.5 wt % azo dye (DR-1) doped in the nematic liquid crystals.


2015 ◽  
Vol 52 (5) ◽  
pp. 47-57 ◽  
Author(s):  
G. Mozolevskis ◽  
A. Ozols ◽  
E. Nitiss ◽  
E. Linina ◽  
A. Tokmakov ◽  
...  

Abstract Liquid crystal display (LCD) industry is among the most rapidly growing and innovating industries in the world. Here continuously much effort is devoted towards developing and implementing new types of LCDs for various applications. Some types of LCDs require relatively high voltages for their operation. For example, bistable displays, in which an altering field at different frequencies is used for switching from clear to scattering states and vice versa, require electric fields at around 10 V/μm for operation. When operated at such high voltages an electrical breakdown is very likely to occur in the liquid crystal (LC) cell. This has been one of the limiting factors for such displays to reach market. In the present paper, we will report on the results of electrical breakdown investigations in high-voltage LC cells. An electrical breakdown in the cell is observed when current in the liquid crystal layer is above a specific threshold value. The threshold current is determined by conductivity of the liquid crystal as well as point defects, such as dust particles in LC layer, pinholes in coatings and electrode hillocks. In order to reduce the currents flowing through the liquid crystal layer several approaches, such as electrode patterning and adding of various buffer layers in the series with LC layer, have been tested. We demonstrate that the breakdown voltages can be significantly improved by means of adding insulating thin films.


2012 ◽  
Vol 1403 ◽  
Author(s):  
Shan Wu ◽  
Minren Lin ◽  
David S-G. Lu ◽  
Lei Zhu ◽  
Q. M. Zhang

ABSTRACTDielectric polymers with high energy density with low loss at high electric fields are highly desired for many energy storage and regulation applications. A polar-fluoropolymer blend consisting of a high energy density polar-fluoropolymer of poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) with a low dielectric loss polymer of poly(ethylene-chlorotrifluoroethylene) (ECTFE) was developed and investigated. We show that the two polymers are partially miscible which leads to blends with high energy density and low loss. Moreover, by introducing crosslinking to further tailor the nano-structures of the blends a markedly reduction of losses in the blend films at high field can be achieved. The crosslinked blend films show a dielectric constant of 7 with a dielectric loss of 1% at low field. Furthermore, the blends maintain a high energy density and low loss (∼3%) at high electric fields (> 250 MV/m).


Open Physics ◽  
2012 ◽  
Vol 10 (3) ◽  
Author(s):  
Davide Valenti ◽  
Giovanni Denaro ◽  
Dominique Adorno ◽  
Nicola Pizzolato ◽  
Salvatore Zammito ◽  
...  

AbstractPolymer translocation through the nanochannel is studied by means of a Monte Carlo approach, in the presence of a static or oscillating external electric voltage. The polymer is described as a chain molecule according to the two-dimensional “bond fluctuation model”. It moves through a piecewise linear channel, which mimics a nanopore in a biological membrane. The monomers of the chain interact with the walls of the channel, modelled as a reflecting barrier. We analyze the polymer dynamics, concentrating on the translocation time through the channel, when an external electric field is applied. By introducing a source of coloured noise, we analyze the effect of correlated random fluctuations on the polymer translocation dynamics.


2001 ◽  
Vol 19 (7) ◽  
pp. 699-706 ◽  
Author(s):  
M. A. Danielides ◽  
S. Shalimov ◽  
J. Kangas

Abstract. We described the ground signatures of dynamic substorm features as observed by the imaging riometer, magnetometers and all-sky camera (ASC) at Kilpisjärvi, Finland on 5 and 25 October 1999 during the late evening hours. The magnetometer data was consistent with the motion of up-ward field-aligned currents (FACs) associated with absorption patches moving within the field of view of the riometer. We used riometer data in order to estimate the intensity of FACs associated with these local current-carrying filaments. It is shown that during these events, the estimated FAC intensity exceeds a threshold value that corresponds to the excitation of the low-frequency turbulence in the upper ionosphere. As a result, a quasi-oscillating regime of anomalous resistivity on the auroral field lines can give rise to the burst-like electron acceleration responsible for simultaneously observed auroral forms and bursts of Pi1B pulsations.Key words. Ionosphere (active experiments; auroral ionosphere; electric fields and currents)


Sign in / Sign up

Export Citation Format

Share Document