scholarly journals Mid-IR Optical Property of Dy:CaF2-SrF2 Crystal Fabricated by Multicrucible Temperature Gradient Technology

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 907
Author(s):  
Lihe Zheng ◽  
Jianbin Zhao ◽  
Yangxiao Wang ◽  
Weichao Chen ◽  
Fangfang Ruan ◽  
...  

Dy3+-doped CaF2-SrF2 crystals with various Dy3+ dopant concentrations were synthesized by multicrucible temperature gradient technology (MC-TGT). Dy:CaF2-SrF2 crystals were fluorite structured and crystallized in cubic Fm3¯m space group, as characterized by X-ray diffraction. The crystallographic site concentration was calculated from the measured density by Archimedes’ hydrostatic weighing principle. The optical transmission reached over 90% with a sample thickness of 1.0 mm. The Sellmeier dispersion formula was obtained following the measured refractive index in a mid-IR range of 1.7–11 μm. Absorption coefficients of 6.06 cm−1 and 12.71 cm−1 were obtained at 804 nm and 1094 nm in 15% Dy:CaF2-SrF2 crystal. The fluorescence spectra of 15 at.% Dy:CaF2-SrF2 showed the strongest wavelength peak at 2919 nm with a full width at half maximum (FWHM) of 267 nm under an excitation wavelength of 808 nm. The fluorescence lifetimes were illustrated for different Dy3+ dopant levels of 5%, 10% and 15%. The results indicate that the Dy:CaF2-SrF2 crystal is a promising candidate for compact mid-IR lasers.

Author(s):  
Edgar S. Etz ◽  
Thomas D. Schroeder ◽  
Winnie Wong-Ng

We are investigating by Raman microprobe measurements the superconducting and related phases in the LnBa2Cu3O7-x (for x=0 to 1) system where yttrium has been replaced by several of the lanthanide (Ln = Nd,Sm,Eu,Ho,Er) elements. The aim is to relate the observed optical spectra (Raman and fluorescence) to the compositional and structural properties of these solids as part of comprehensive materials characterization. The results are correlated with the methods of synthesis, the processing techniques of these materials, and their superconducting properties. Of relevance is the substitutional chemistry of these isostructural systems, the differences in the spectra, and their microanalytical usefulness for the detection of impurity phases, and the assessment of compositional homogeneity. The Raman spectra of most of these compounds are well understood from accounts in the literature.The materials examined here are mostly ceramic powders prepared by conventional solid state reaction techniques. The bulk samples are of nominally single-phase composition as determined by x-ray diffraction.


2021 ◽  
Author(s):  
Yan Chen ◽  
Yuemei Lan ◽  
Dong Wang ◽  
Guoxing Zhang ◽  
Wenlong Peng ◽  
...  

A series of Gd2-xMoO6:xEu3+(x=0.18-0.38) nanophosphors were synthesized by the solvothermal method. The properties of this nanophosphor were characterized by x-ray diffraction (XRD), transmission electron microscope (TEM), fluorescence spectra and diffuse...


2006 ◽  
Vol 514-516 ◽  
pp. 1155-1160 ◽  
Author(s):  
Talaat Moussa Hammad

Sol gel indium tin oxide thin films (In: Sn = 90:10) were prepared by the sol-gel dipcoating process on silicon buffer substrate. The precursor solution was prepared by mixing SnCl2.2H2O and InCl3 dissolved in ethanol and acetic acid. The crystalline structure and grain orientation of ITO films were determined by X-ray diffraction. The surface morphology of the films was characterized by scanning electron microscope (SEM). Optical transmission and reflectance spectra of the films were analyzed by using a UV-visible spectrophotometer. The transport properties of majority charge carriers for these films were studied by Hall measurement. ITO thin film with electrical resistivity of 7.6 ×10-3 3.cm, Hall mobility of approximately 2 cm2(Vs)-1 and free carrier concentration of approximately 4.2 ×1020 cm-3 are obtained for films 100 nm thick films. The I-V curve measurement showed typical I-V characteristic behavior of sol gel ITO thin films.


2021 ◽  
Author(s):  
Isam M. Arafa ◽  
Mazin Y. Shatnawi ◽  
Yousef N. Obeidallah ◽  
Ahmed K. Hijazi ◽  
Yaser A . Yousef

Abstract Four transition metal borohydrides (MTBHs, MT = Ni, Fe, Co, and Cu) were prepared by sonicating a mixture of the desired MT salt with excess NaBH4 in a nonaqueous DMF/CH3OH media. The process afforded bimetallic (Ni-BH4), trimetallic (Fe-BH4, Co-BH4), and mixed-valence (Cu-H, Cu-BH4) amorphous, ferromagnetic nanoparticles as identified by thermal, ATR-IR, X-Ray diffraction, and magnetic susceptibility techniques. The electrical conductivity (σ) of cold-pressed discs of these MTBHs shows a nonlinear increase while their thermal conductivity (κ) decreases in the temperature range of 303 ≤ T ≤ 373 K. The thermal energy transport occurs through phonon lattice dynamics rather than electronic. The σ/κ ratio shows a nonlinear steep increase from 9.4 to 270 KV-2 in Ni-BH4, while a moderate-weak increase is observed for Fe-BH4, Co-BH4, and Cu-BH4. Accordingly, the corresponding thermoelectric (TE) parameters S, PF, ZT, and η were evaluated. All TE data shows that the bimetallic Ni-BH4 (S, 80 μVK-1; PF, 259 μWm-1K-2; ZT 0.64; η, 2.56%) is a better TE semiconductor than the other three MT-BHs investigated in this study. Our findings show that Ni-BH4 is a promising candidate to exploit low-temperature waste heat from body heat, sunshine, and small domestic devices for small-scale TE applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
YiChao Yan ◽  
Wei Shi ◽  
HongChuan Jiang ◽  
Jie Xiong ◽  
WanLi Zhang ◽  
...  

The redox reaction between Al and metallic oxide has its advantage compared with intermetallic reaction and Al/NiO nanomutlilayers are a promising candidate for enhancing the performance of energetic igniter. Al/NiO nanomutlilayers with different modulation periods are prepared on alumina substrate by direct current (DC) magnetron sputtering. The thicknesses of each period are 250 nm, 500 nm, 750 nm, 1000 nm, and 1500 nm, respectively, and the total thickness is 3 μm. The X-ray diffraction (XRD) and scanning electron microscope (SEM) results of the as-deposited Al/NiO nanomutlilayers show that the NiO films are amorphous and the layered structures are clearly distinguished. The X-ray photoelectron spectroscopy (XPS) demonstrates that the thickness of Al2O3increases on the side of Al monolayer after annealing at 450°C. The thermal diffusion time becomes greater significantly as the amount of thermal boundary conductance across the interfaces increases with relatively smaller modulation period. Differential scanning calorimeter (DSC) curve suggests that the energy release per unit mass is below the theoretical heat of the reaction due to the nonstoichiometric ratio between Al and NiO and the presence of impurities.


2006 ◽  
Vol 11-12 ◽  
pp. 159-162 ◽  
Author(s):  
Yong Ge Cao ◽  
Lei Miao ◽  
Sakae Tanemura ◽  
Yasuhiko Hayashi ◽  
Masaki Tanemura

Transparent indium-doped ZnO (IZO) films with low In content (<6at%) were fabricated through radio-frequency (rf) helicon magnetron sputtering. Formation of In-Zn-O solid solution was confirmed by X-ray diffraction (XRD) patterns. Incorporation of indium into ZnO films enhances the optical transmission in the visible wavelength. The optical band-gaps slightly increase from 3.25eV (ZnO) to 3.28eV (In0.04Zn0.96O) and to 3.30eV (In0.06Zn0.94O) due to Burstain-Moss effect. The Urbach tail parameter E0, which is believed to be a function of structural disorder, increases from 79meV (ZnO), to 146meV (In0.04Zn0.96O), and to 173meV (In0.06Zn0.94O), which is consistent with increase of Full-Width Half-Maximum (FWHM) in corresponding XRD patterns. Decreasing in crystal quality with increasing indium concentration is also confirmed by photoluminescence spectra.


2015 ◽  
Vol 13 (2) ◽  
pp. 143-152 ◽  
Author(s):  
K. Gallucci ◽  
F. Micheli ◽  
D. Barisano ◽  
A. Villone ◽  
P.U. Foscolo ◽  
...  

Abstract The aim of this work is to identify solid sorbents for CO2 capture for coal and biomass syngas conditioning and cleaning by means of a sorption-enhanced reaction process. Hydrotalcite-like compounds (HTlcs) were synthesized with and without K2CO3 impregnation. Samples were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) porosimetry after synthesis and after capture tests, respectively. Sorption and desorption tests were performed in a fluidized bed reactor, under cyclic conditions, at two different temperature levels: 350/450°C and 600/700°C. At low temperature only the Mg–Al HTlcs K promoted samples showed stability and sorption capacity comparable with literature values. On the other hand, results at high temperature indicate that the mixed Mg-Ca-Al HTlcs samples exhibit the best behavior with the highest sorption capacity (1.7 mmolCO2/g) almost stable over 5 sorption/regeneration cycles; furthermore, addition of steam allowed increasing their reactivity by 70% compared to the dry value. This type of sorbent could be a promising candidate to prepare a bifunctional sorbent–catalyst for sorption-enhanced processes, taking place directly in the fluidized bed gasifier, or downstream the reactor for adjustment of gas composition before further conversion in gaseous energy carriers.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3177 ◽  
Author(s):  
Joana I. T. Costa ◽  
Andreia S. F. Farinha ◽  
Filipe A. Almeida Paz ◽  
Augusto C. Tomé

A simple and straightforward synthesis of diporphyrins and pentaporphyrins is reported here. The supramolecular interactions of the new porphyrin derivatives with C60 and PyC60 (a pyridyl [60]fulleropyrrolidine) were evaluated by absorption and fluorescence titrations in toluene. While no measurable modifications of the absorption and fluorescence spectra were observed upon addition of C60 to the porphyrin derivatives, the addition of PyC60 to the corresponding mono-Zn(II) porphyrins resulted in the formation of Zn(porphyrin)–PyC60 coordination complexes and the binding constants were calculated. Results show that the four free-base porphyrin units in pentaporphyrin 6 have a significant contribution in the stabilization of the 6–PyC60 complex. The crystal and molecular features of the pentaporphyrin Zn5 were unveiled using single-crystal X-ray diffraction studies.


2019 ◽  
Vol 43 (9-10) ◽  
pp. 437-442 ◽  
Author(s):  
Shou De Xu ◽  
Xiang Hua Wu

A series of bimetallic dppfM(II) (dppf = 1,1’-bis (diphenyphosphino) ferrocene; M = Pt and Pd) dithiocarbamate complexes is synthesized and characterized by spectroscopic methods and single-crystal X-ray diffraction. Their antitumor activities in vitro are investigated by MTT assays against four cancer cell lines. The anticancer studies indicate most of the complexes display good to excellent antitumor activity. Remarkably, the platinum complex with a pyrrolidinyl substituent (3b) was identified as the most promising candidate due to its high potency and broad spectrum of activity.


Sign in / Sign up

Export Citation Format

Share Document