scholarly journals Surface Acoustic Wave-Based Flexible Piezocomposite Strain Sensor

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1576
Author(s):  
Rishikesh Srinivasaraghavan Govindarajan ◽  
Eduardo Rojas-Nastrucci ◽  
Daewon Kim

A surface acoustic wave (SAW), device composed of polymer and ceramic fillers, exhibiting high piezoelectricity and flexibility, has a wide range of sensing applications in the aerospace field. The demand for flexible SAW sensors has been gradually increasing due to their small size, wireless capability, low fabrication cost, and fast response time. This paper discusses the structural, thermal, and electrical properties of the developed sensor, based on different micro- and nano-fillers, such as lead zirconate titanate (PZT), calcium copper titanate (CCTO), and carbon nanotubes (CNTs), along with polyvinylidene fluoride (PVDF) as a polymer matrix. The piezocomposite substrate of the SAW sensor is fabricated using a hot press, while interdigital transducers (IDTs) are deposited through 3D printing. The piezoelectric properties are also enhanced using a non-contact corona poling technique under a high electric field to align the dipoles. Results show that the developed passive strain sensor can measure mechanical strains by examining the frequency shifts of the detected wave signals.

2019 ◽  
Vol 24 (4) ◽  
pp. 632-637 ◽  
Author(s):  
Imran Shah ◽  
Emad Uddin ◽  
Aamir Mubashar ◽  
Muhammad Yamin Younis ◽  
Hudair Samad ◽  
...  

A three-dimensional numerical simulation of the interaction of a surface acoustic wave (SAW) with a droplet of water is carried out. The mixing produced inside the droplet due to the incident with the SAW and the droplet is investigated by undertaking a parametric study, with parameters such as frequency, drop size, and the lateral position of the droplet on the surface of the substrate. The linear relationship between the input voltage and the mixing velocity inside the droplet is obtained with variation of the input voltage of the inter-digital transducer (IDT) of the SAW device within a 10--40 V range. With the variation in frequency, the maximum mixing velocity is observed at 20 MHz and it appears to be independent of the size of the droplet. Varying the substrate material with lead zirconate titanate and lithium niobate produces better mixing. Lithium niobate is preferred due to its availability and cost-effectiveness. A drop of 600 um diameter produces better mixing. The different velocities inside the drop and the SAW device are obtained by changing the droplet position in the lateral direction (asymmetrical position) from the centre of the substrate. Cut planes parallel and perpendicular to the SAW at the core of a half-spherical droplet are observed to visualise the mixing effects inside the droplet during the interaction. To achieve the best mixing criteria, the droplet is moved in a lateral direction. An efficient parametric design for the mixing phenomena in micro-fluidic devices is presented for point-of-care devices.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4166
Author(s):  
Jean Claude Asseko Ondo ◽  
Eloi Jean Jacques Blampain ◽  
Gaston N’Tchayi Mbourou ◽  
Stephan Mc Murtry ◽  
Sami Hage-Ali ◽  
...  

In this work, we present a two-dimensional Finite Element Method (2D-FEM) model implemented on a commercial software, COMSOL Multiphysics, that is used to predict the high temperature behavior of surface acoustic wave sensors based on layered structures. The model was validated by using a comparative study between experimental and simulated results. Here, surface acoustic wave (SAW) sensors consist in one-port synchronous resonators, based on the Pt/AlN/Sapphire structure and operating in the 2.45-GHz Industrial, scientific and medical (ISM) band. Experimental characterizations were carried out using a specific probe station that can perform calibrated measurements from room temperature to 500 °C. In our model, we consider a pre-validated set of physical constants of AlN and Sapphire and we take into account the existence of propagation losses in the studied structure. Our results show a very good agreement between the simulation and experiments in the full range of investigated temperatures, and for all key parameters of the SAW sensor such as insertion losses, resonance frequency, electromechanical factor of the structure (k2) and quality factor (Q). Our study shows that k2 increases with the temperature, while Q decreases. The resonance frequency variation with temperature shows a good linearity, which is very useful for temperature sensing applications. The measured value of the temperature coefficient of frequency (TCF) is equal to −38.6 ppm/°C, which is consistent with the numerical predictions.


Ultrasonics ◽  
1986 ◽  
Vol 24 (3) ◽  
pp. 133-136 ◽  
Author(s):  
C.K. Jen ◽  
P. Cielo ◽  
X. Maldague ◽  
E.L. Adler ◽  
G. Shapiro

2014 ◽  
Vol 28 (07) ◽  
pp. 1450056 ◽  
Author(s):  
Hua-Lin Cai ◽  
Yi Yang ◽  
Yi-Han Zhang ◽  
Chang-Jian Zhou ◽  
Cang-Ran Guo ◽  
...  

In this paper, a surface acoustic wave (SAW) biosensor with gold delay area on LiNbO 3 substrate detecting DNA sequences is proposed. By well-designed device parameters of the SAW sensor, it achieves a high performance for highly sensitive detection of target DNA. In addition, an effective biological treatment method for DNA immobilization and abundant experimental verification of the sensing effect have made it a reliable device in DNA detection. The loading mass of the probe and target DNA sequences is obtained from the frequency shifts, which are big enough in this work due to an effective biological treatment. The experimental results show that the biosensor has a high sensitivity of 1.2 pg/ml/Hz and high selectivity characteristic is also verified by the few responses of other substances. In combination with wireless transceiver, we develop a wireless receiving and processing system that can directly display the detection results.


Sign in / Sign up

Export Citation Format

Share Document