scholarly journals Microstructure and Mechanical Properties of Aged and Hot Rolled AZ80 Magnesium Alloy Sheets

Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 239 ◽  
Author(s):  
Bing He ◽  
Yaobo Hu ◽  
Tianshuo Zhao ◽  
Qingshan Yao ◽  
Fusheng Pan

This study focused on the effects of ageing for various time at 175 °C before hot rolling on microstructure and mechanical properties of AZ80 magnesium alloys. The amount of γ-Mg17Al12 increased in line with ageing time and during the rolling process could facilitate the fine grains and sub-grains, which resulted in an inhomogeneous or bimodal microstructure, and weakening basal-type texture intensity or occurrence of double-peak texture. However, a larger quantity of γ-Mg17Al12 distributed on the matrix in the alloy aged for 240 min, or the precipitates decorating the grain boundaries in the alloy aged for 75 min, were detrimental to the mechanical properties, and lower ultimate tensile strength with elongation were obtained in the two alloys as a result. When the alloy was aged for 200 min, it showed an optimum mechanical property with its yield strength of 281 MPa, ultimate tensile strength of 363 MPa and a medium elongation of 13.3%, which was mainly attributed to the interaction of the hard second phase particles with dislocation movement and the lowest basal-type texture intensity that favored the basal slip.

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 385
Author(s):  
Yushi Qi ◽  
Heng Wang ◽  
Lili Chen ◽  
Hongming Zhang ◽  
Gang Chen ◽  
...  

A ZK61-Y magnesium (Mg) alloy wheel hub was prepared via liquid forging—isothermal forging process. The effects of Y-element contents on the microstructure and mechanical properties of liquid forging blanks were investigated. The formation order of the second phase was I-phase (Mg3Zn6Y) → W-phase (Mg3Zn3Y2) → Z-phase (Mg12ZnY) with the increase of the Y-element content. Meanwhile, the I-phase and Z-phase formed in the liquid forging process were beneficial to the grain refinement. The numerical simulation of the isothermal forging process was carried out to analyze the effects of forming temperature on the temperature and stress field in the forming parts using the software Deform-3D. Isothermal forging experiments and post heat treatments were conducted. The influence of isothermal forging temperature, heat treatment temperature and preservation time on the microstructure and mechanical properties of the forming parts were also studied. The dynamic recrystallization (DRX), second-phase hardening, and work hardening account for the improvement of properties after the isothermal forging process. The forming part forged at 380 °C displayed the outstanding properties. The elongation, yield strength, and ultimate tensile strength were 18.5%, 150 MPa and 315 MPa, respectively. The samples displayed an increased elongation and decreased strength after heat treatments. The 520 °C—1 h sample possessed the best mechanical properties, the elongation was 25.5%, the yield stress was 125 MPa and the ultimate tensile strength was 282 MPa. This can be ascribed to the recrystallization and the elimination of working hardening. Meanwhile, the second phase transformation (I-phase → W-phase → Mg2Y + MgZn2), dissolution, and decomposition can be observed, as well.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
O. I. Sekunowo ◽  
G. I. Lawal ◽  
S. O. Adeosun

Samples of the 6063 (Al-1.09Mg2Si) alloy ingot were melted in a crucible furnace and cast in metal and sand moulds, respectively. Standard tensile, hardness, and microstructural test specimens were prepared from cast samples, solution treated at 520∘C, soaked for 6 hrs, and immediately quenched at ambient temperature in a trough containing water to assume a supersaturated structure. The quenched specimens were then thermally aged at 175∘C for 3–7 hrs. Results show that at different ageing time, varied fractions of precipitates and intermetallics evolved in the specimens’ matrices which affect the resulting mechanical properties. The metal mould specimens aged for four hours (MTA-4) exhibited superior ultimate tensile strength of 247.8 MPa; microhardness, 68.5 HV; elongation, 28.2% . It is concluded that the extent of improvement in mechanical properties depends on the fractions, coherence, and distribution of precipitates along with the type of intermetallics developed in the alloy during ageing process.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 790 ◽  
Author(s):  
Changping Tang ◽  
Kai Wu ◽  
Wenhui Liu ◽  
Di Feng ◽  
Xuezhao Wang ◽  
...  

The effects of Gd, Y content on the microstructure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy were investigated using hardness measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and uniaxial tensile testing. The results indicate that the alloys in as-cast condition mainly consist of α-Mg matrix and non-equilibrium eutectic Mg5.05RE (RE = Gd, Y, Nd). After solution treatment, the non-equilibrium eutectics dissolved into the matrix but some block shaped RE-rich particles were left at the grain boundaries and within grains. These particles are especially Y-rich and deteriorate the mechanical properties of the alloys. Both the compositions of the eutectic and the block shaped particle were independent of the total Gd, Y content of the alloys, but the number of the particles increases as the total Gd, Y content increases. The ultimate tensile strength increases as the total Gd, Y content decreases. A Mg-5.56Gd-3.38Y-1.11Nd-0.48Zr alloy with the highest ultimate tensile strength of 280 MPa and an elongation of 1.3% was fabricated. The high strength is attributed to the age hardening behavior and the decrease in block shaped particles.


2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.


2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


2011 ◽  
Vol 239-242 ◽  
pp. 352-355
Author(s):  
Quan An Li ◽  
Qing Zhang ◽  
Chang Qing Li ◽  
Yao Gui Wang

The effects of 2-12 wt.% Y addition on the microstructure and mechanical properties of as-cast Mg-Y binary alloys have been investigated. The results show that proper content of rare earth Y addition can obviously refine the grains and form high melting point Mg24Y5 phases in the matrix, and improve the microstructure and mechanical properties of the alloys. At room temperature, the optimum combination of ultimate tensile strength and elongation, 195MPa and 7.5%, is obtained in Mg-10 wt.% Y alloy.


2021 ◽  
Vol 40 (1) ◽  
pp. 300-309
Author(s):  
Sheng Huang ◽  
Changrong Li ◽  
Zhiying Li ◽  
Zeyun Zeng ◽  
Yongqiang Zhai ◽  
...  

Abstract HRB500E seismic steel bars are mainly used in high-rise buildings near the seismic zone. The influence of different niobium contents (0–0.023%) on the microstructure and mechanical properties of HRB500E seismic reinforcement was studied. Results showed that the grain size of ferrite was between 3.6 and 8.3 μm when only V was added. Meanwhile, as the niobium content increases, the ferrite particles are further refined. After adding niobium, the grain contribution increased by 9%. The addition of niobium significantly refined the grain size of HRB500E seismic reinforcement. The second-phase nano-elliptic precipitate is NbC. The precipitated phase is dispersed on the grain boundary and the matrix, and the dislocation density on the matrix promotes the precipitation of NbC particles along the dislocation line. The second-phase precipitation of niobium can form an effective pinning effect and then refine the pearlite spacing. The microhardness and the tensile strength also significantly improved. The yield strength increased from 509 to 570 MPa.


2013 ◽  
Vol 747-748 ◽  
pp. 245-250 ◽  
Author(s):  
Jun Luo ◽  
Rong Shi Chen ◽  
En Hou Han

The microstructure and mechanical properties of as-cast Mg-3Sn-xGd (x=0, 0.2, 1 wt.%) alloys were studied by using OM, SEM, EDX, XRD etc. With the increase of Gd, the formation of Mg2Sn phase was impeded and the MgSnGd phase formed and the volume fraction of this new phase obviously increased. The ultimate tensile strength and elongation to failure increased with dilute Gd addition but sharply decreased when the Gd addition comes to 1.34 wt.%. The possible reasons for the variation in microstructure and mechanical properties were discussed.


2010 ◽  
Vol 152-153 ◽  
pp. 1083-1087
Author(s):  
Bo Wang ◽  
Yu Tao Zhao ◽  
Song Li Zhang ◽  
Gang Chen ◽  
Xiao Nong Cheng

In-situ (Al2O3+Al3Zr)p/A356 composites were synthesized by melt reaction technology and the effects of yttrium on microstructure and mechanical properties of the composites are investigated. The results indicate that the reinforced particulates Al2O3 and Al3Zr become smaller in size with yttrium addition, the sizes are about 0.5~2μm. The distribution becomes more homogeneous, the morphologies are spheroid-shape and ellipsoid-shape, the ambitus is blunt. The mechanical properties test results show the mechanical properties of the composites are greatly enhanced. With 0.4wt.% yttrium addition, the ultimate tensile strength and yield strength of the composites reach to 388MPa and 296MPa, which are increased 35.6% and 37.0% comparing with no yttrium addition, respectively. The effect mechanisms of yttrium are discussed.


Sign in / Sign up

Export Citation Format

Share Document