scholarly journals Biodiversity of Russian Local Sheep Breeds Based on Pattern of Runs of Homozygosity

Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 360
Author(s):  
Tatiana Deniskova ◽  
Arsen Dotsev ◽  
Marina Selionova ◽  
Gottfried Brem ◽  
Natalia Zinovieva

Russian sheep breeds traditionally raised in specific environments are valuable parts of sociocultural heritage and economic component of the regions. However, the import of commercial breeds negatively influences the population sizes of local sheep populations and might lead to biodiversity loss. Estimation of the runs of homozygosity (ROH) in local sheep genomes is an informative tool to address their current genetic state. In this work, we aimed to address the ROH distribution and to estimate genome inbreeding based on SNP data to evaluate genetic diversity in Russian local sheep breeds. Materials for this study included SNP-genotypes from twenty-seven Russian local sheep breeds which were generated using the Illumina OvineSNP50 BeadChip (n = 391) or the Illumina Ovine Infinium HD BeadChip (n = 315). A consecutive runs method was used to calculate ROH which were estimated for each animal and then categorized in the ROH length classes. The ROH were found in all breeds. The mean ROH length varied from 86 to 280 Mb, while the ROH number ranged from 37 to 123. The genomic inbreeding coefficient varied from 0.033 to 0.106. Our findings provide evidence of low to moderate genomic inbreeding in major local sheep populations.

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 498 ◽  
Author(s):  
Antonio Boccardo ◽  
Stefano Paolo Marelli ◽  
Davide Pravettoni ◽  
Alessandro Bagnato ◽  
Giuseppe Achille Busca ◽  
...  

The German Shorthaired Pointer (GSHP) is a breed worldwide known for its hunting versatility. Dogs of this breed are appreciated as valuable companions, effective trackers, field trailers and obedience athletes. The aim of the present work is to describe the genomic architecture of the GSHP breed and to analyze inbreeding levels under a genomic and a genealogic perspective. A total of 34 samples were collected (24 Italian, 10 USA), and the genomic and pedigree coefficients of inbreeding have been calculated. A total of 3183 runs of homozygosity (ROH) across all 34 dogs have been identified. The minimum and maximum number of Single Nucleotide Polymorphisms (SNPs) defining all ROH are 40 and 3060. The mean number of ROH for the sample was 93.6. ROH were found on all chromosomes. A total of 854 SNPs (TOP_SNPs) defined 11 ROH island regions (TOP_ROH), in which some gene already associated with behavioral and morphological canine traits was annotated. The proportion of averaged observed homozygotes estimated on total number of SNPs was 0.70. The genomic inbreeding coefficient based on ROH was 0.17. The mean inbreeding based on genealogical information resulted 0.023. The results describe a low inbred population with quite a good level of genetic variability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhong Xu ◽  
Shuqi Mei ◽  
Jiawei Zhou ◽  
Yu Zhang ◽  
Mu Qiao ◽  
...  

The primary purpose of the current study was to assess the genetic diversity, runs of homozygosity (ROH) and ROH islands in a Chinese composite pig and explore hotspot regions for traces of selection. First, we estimated the length, number, and frequency of ROH in 262 Xidu black pigs using the Porcine SNP50 BeadChip and compared the estimates of inbreeding coefficients, which were calculated based on ROHs (FROH) and homozygosity (FHOM). Our result shows that a total of 7,248 ROH exceeding 1Mb were detected in 262 pigs. In addition, Sus scrofa chromosome (SSC) 8 and SSC10, respectively, has the highest and lowest chromosome coverage by ROH. These results suggest that inbreeding estimation based on total ROH may be a useful method, especially for crossbreed or composite populations. We also calculated an inbreeding coefficient of 0.077 from the total ROH. Eight ROH islands were found in this study. These ROH islands harbored genes associated with fat deposition, muscular development, reproduction, ear shape, and adaptation, such as TRAF7, IGFBP7, XPO1, SLC26A8, PPARD, and OR1F1. These findings may help to understand the effects of environmental and artificial selection on the genome structure of composite pigs. Our results provide a basis for subsequent genomic selection (GS), and provides a reference for the hybrid utilization of other pig breeds.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brian Martin Babigumira ◽  
Johann Sölkner ◽  
Gábor Mészáros ◽  
Christina Pfeiffer ◽  
Craig R. G. Lewis ◽  
...  

Pig herds in Africa comprise genotypes ranging from local ecotypes to commercial breeds. Many animals are composites of these two types and the best levels of crossbreeding for particular production systems are largely unknown. These pigs are managed without structured breeding programs and inbreeding is potentially limiting. The objective of this study was to quantify ancestry contributions and inbreeding levels in a population of smallholder pigs in Uganda. The study was set in the districts of Hoima and Kamuli in Uganda and involved 422 pigs. Pig hair samples were taken from adult and growing pigs in the framework of a longitudinal study investigating productivity and profitability of smallholder pig production. The samples were genotyped using the porcine GeneSeek Genomic Profiler (GGP) 50K SNP Chip. The SNP data was analyzed to infer breed ancestry and autozygosity of the Uganda pigs. The results showed that exotic breeds (modern European and old British) contributed an average of 22.8% with a range of 2–50% while “local” blood contributed 69.2% (36.9–95.2%) to the ancestry of the pigs. Runs of homozygosity (ROH) greater than 2 megabase (Mb) quantified the average genomic inbreeding coefficient of the pigs as 0.043. The scarcity of long ROH indicated low recent inbreeding. We conclude that the genomic background of the pig population in the study is a mix of old British and modern pig ancestries. Best levels of admixture for smallholder pigs are yet to be determined, by linking genotypes and phenotypic records.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0232436
Author(s):  
Christos Dadousis ◽  
Francesca Cecchi ◽  
Michela Ablondi ◽  
Maria Chiara Fabbri ◽  
Alessandra Stella ◽  
...  

The objective of this study was to investigate the genetic diversity of the Garfagnina (GRF) goat, a breed that currently risks extinction. For this purpose, 48 goats were genotyped with the Illumina CaprineSNP50 BeadChip and analyzed together with 214 goats belonging to 9 other Italian breeds (~25 goats/breed), whose genotypes were available from the AdaptMap project [Argentata (ARG), Bionda dell’Adamello (BIO), Ciociara Grigia (CCG), Di Teramo (DIT), Garganica (GAR), Girgentana (GGT), Orobica (ORO), Valdostana (VAL) and Valpassiria (VSS)]. Comparative analyses were conducted on i) runs of homozygosity (ROH), ii) admixture ancestries and iii) the accuracy of breed traceability via discriminant analysis on principal components (DAPC) based on cross-validation. ROH analyses was used to assess the genetic diversity of GRF, while admixture and DAPC to evaluate its relationship to the other breeds. For GRF, common ROH (more than 45% in GRF samples) was detected on CHR 12 at, roughly 50.25–50.94Mbp (ARS1 assembly), which spans the CENPJ (centromere protein) and IL17D (interleukin 17D) genes. The same area of common ROH was also present in DIT, while a broader region (~49.25–51.94Mbp) was shared among the ARG, CCG, and GGT. Admixture analysis revealed a small region of common ancestry from GRF shared by BIO, VSS, ARG and CCG breeds. The DAPC model yielded 100% assignment success for GRF. Overall, our results support the identification of GRF as a distinct native Italian goat breed. This work can contribute to planning conservation programmes to save GRF from extinction and will improve the understanding of the socio-agro-economic factors related with the farming of GRF.


Author(s):  
Radovan Kasarda ◽  
Nina Moravčíková ◽  
Ondrej Kadlečík ◽  
Anna Trakovická ◽  
Marko Halo ◽  
...  

The objective of this study was to analyse the level of pedigree and genomic inbreeding in a herd of the Norik of Muran horses. The pedigree file included 1374 animals (603 stallions and 771 mares), while the reference population consisted of animals that were genotyped by using 70k SNP platform (n = 25). The trend of pedigree inbreeding was expressed as the probability that an animal has two identical alleles by descent according to classical formulas. The trend of genomic inbreeding was derived from the distribution of runs of homozygosity (ROHs) with various length in the genome based on the assumption that these regions reflect the autozygosity originated from past generations of ancestors. A maximum of 19 generations was found in pedigree file. As expected, the highest level of pedigree completeness was found in first five generations. Subsequent quality control of genomic data resulted in totally 54432 SNP markers covering 2.242 Mb of the autosomal genome. The pedigree analysis showed that in current generation can be expected the pedigree inbreeding at level 0.23% (ΔFPEDi = 0.19 ± 1.17%). Comparable results was obtained also by the genomic analysis, when the inbreeding in current generation reached level 0.11%. Thus, in term of genetic diversity both analyses reflected sufficient level of variability across analysed population of Norik of Muran horses.


Author(s):  
Talaat Bashandy ◽  
Ahmed Hussein ◽  
Mohamed Solma ◽  
Ayman Kassab ◽  
Hatem Hamdon

Molecular markers are the most ideal approach to study genetic diversity. Consequently, we utilized both ISSR and RAPD markers to assess genetic diversity and relationships among three different populations of Farafra, Ossimi and Rahmani Egyptian sheep breeds. Both ISSR and RAPD gave moderate polymorphism 41.3% and 48.51%, respectively. Besides, this value was consistent with the moderate value of the mean of polymorphism information content (0.16 and 0.20, respectively). Farafra-F and Farafra-D populations had the highest similarity which was 0.92 for ISSR and 0.90 for the RAPD marker. Furthermore, ISSR and RAPD constructed dendrogram separated all the studied sheep into two main clusters. All the three populations of Farafra breed combined into one main cluster, while the second cluster contained both Rahmani and Ossimi breeds. The used molecular markers were able to discriminate among evaluated sheep and displayed that Farafra breed more closely related to Ossimi than Rahmani breed.


2011 ◽  
Vol 54 (4) ◽  
pp. 419-429
Author(s):  
S. Kusza ◽  
S. Mihók ◽  
L. Czeglédi ◽  
A. Jávor ◽  
M. Árnyasi

Abstract. The aim of the study was to provide information on the genetic variability of the Hungarian Bronze turkey gene reserve population and its difference from the Broad-breasted turkey, and offer guidance and proposals for its future conservation strategies. Altogether, 239 Hungarian Bronze turkeys from 10 strains and 13 Broad-breasted turkeys as a control population were genotyped for 15 microsatellites. All loci were polymorphic with the average number of alleles per locus 3.20±1.146 in the Hungarian Bronze turkey. The mean expected (Hexp) and observed heterozygosity (Hobs) were not different (0.392 and 0.376, respectively) in the overall population, and similar values were obtained for hens and bucks and among hen strains. Inbreeding coefficient (FIS) and Shannon index (I) indicated that there was low inbreeding within hens and bucks. Our results confirm that the genetic diversity in the Hungarian Bronze turkey population has been preserved by the rotational mating system. Differences between the Hungarian Bronze turkey and the Broad-breasted turkey populations were determined. Nei’s unbiased values clearly indicated that the two populations are highly genetically differentiated.


2011 ◽  
Vol 11 ◽  
pp. 1641-1659 ◽  
Author(s):  
Lorraine Pariset ◽  
Marco Mariotti ◽  
Maria Gargani ◽  
Stephane Joost ◽  
Riccardo Negrini ◽  
...  

We employed mtDNA and nuclear SNPs to investigate the genetic diversity of sheep breeds of three countries of the Mediterranean basin: Albania, Greece, and Italy. In total, 154 unique mtDNA haplotypes were detected by means of D-loop sequence analysis. The major nucleotide diversity was observed in Albania. We identified haplogroups, A, B, and C in Albanian and Greek samples, while Italian individuals clustered in groups A and B. In general, the data show a pattern reflecting old migrations that occurred in postneolithic and historical times. PCA analysis on SNP data differentiated breeds with good correspondence to geographical locations. This could reflect geographical isolation, selection operated by local sheep farmers, and different flock management and breed admixture that occurred in the last centuries.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Eva M. Strucken ◽  
Netsanet Z. Gebrehiwot ◽  
Marimuthu Swaminathan ◽  
Sachin Joshi ◽  
Mohammad Al Kalaldeh ◽  
...  

Abstract Background The genetic structure of a diverse set of 15 Indian indigenous breeds and non-descript indigenous cattle sampled from eight states was examined, based on 777 k single nucleotide polymorphism (SNP) genotypes obtained on 699 animals, with sample sizes ranging from 17 to 140 animals per breed. To date, this is the largest and most detailed assessment of the genetic diversity of Indian cattle breeds. Results Admixture analyses revealed that 109 of the indigenous animals analyzed had more than 1% Bos taurus admixture of relatively recent origin. Pure indigenous animals were defined as having more than 99% Bos indicus ancestry. Assessment of the genetic diversity within and between breeds using principal component analyses, F statistics, runs of homozygosity, the genomic relationship matrix, and maximum likelihood clustering based on allele frequencies revealed a low level of genetic diversity among the indigenous breeds compared to that of Bos taurus breeds. Correlations of SNP allele frequencies between breeds indicated that the genetic variation among the Bos indicus breeds was remarkably low. In addition, the variance in allele frequencies represented less than 1.5% between the Indian indigenous breeds compared to about 40% between Bos taurus dairy breeds. Effective population sizes (Ne) increased during a period post-domestication, notably for Ongole cattle, and then declined during the last 100 generations. Although we found that most of the identified runs of homozygosity are short in the Indian indigenous breeds, indicating no recent inbreeding, the high FROH coefficients and low FIS values point towards small population sizes. Nonetheless, the Ne of the Indian indigenous breeds is currently still larger than that of Bos taurus dairy breeds. Conclusions The changes in the estimates of effective population size are consistent with domestication from a large native population followed by consolidation into breeds with a more limited population size. The surprisingly low genetic diversity among Indian indigenous cattle breeds might be due to their large Ne since their domestication, which started to decline only 100 generations ago, compared to approximately 250 to 500 generations for Bos taurus dairy cattle.


2021 ◽  
Vol 37 (37) ◽  
pp. 6-13
Author(s):  
Mădălina Butac ◽  

There are about three thousand varieties belonging to Prunus domestica available at present worldwide that can be used as genitors in plum breeding activity. An analysis of the pedigrees of plum cvs. developed in Romanian breeding programs shows that the most are descended from ‘Tuleu gras’, ‘Renclod Althan’, ‘Anna Späth’, ‘Stanley’ and ‘Early Rivers’, called 'ancestors'. That means the majority of plum cvs. have at least one of the ancestors as parent or grandparent. For those 40 plum cvs. registered in Romania in 60 years an increased number of crosses with these 'ancestors' has led to what we call 'inbreeding'. According to data presented in this paper, ‘Tuleu gras’ cv. was the most frequently used parent in the cross combinations, giving origin to 23 cvs. Among the other frequently used genitors were: ‘Renclod Althan’ (7 cvs.), ‘Anna Späth’ (3 cvs.) and ‘Stanley’ (1 cv.). Many of the cultivars – 32 altogether (80%) have originated from hybridization, whereas 4 cvs. have originated from open pollination, others 3 cvs. from mutagenesis and 1 cv. from clonal selection. The goal of this work is to measure genetic diversity presently use in Romanian plum breeding. Pedigrees of each cv. were used to study the genetic contributions of ancestor. Of the 40 cvs. analyzed, 33 had an inbreeding coefficient other than zero. The overall mean inbreeding coefficient was 0.419 for all cvs., where their parentages were known. For cvs. with unknown parentage (nonrelated with known parentage) the inbreeding coefficient is zero. The mean coefficient of coancestry of 40 plum cvs. are 0.081 with ‘Tuleu gras’ cv., 0.019 with ‘Renclod Althan’ and ‘Anna Späth’ cvs., 0.017 with ‘Early Rivers’ cv., 0.014 with ‘d’Agen’ and ‘Renclod Violet’ cvs. and 0.005 with Stanley cv. In conclusion, plum breeders have worked with populations of greatly reduced genetic diversity and this strategy becomes a problem because it leads to genetic impoverishment, and, also, the loss of the genetic resistance to different diseases.


Sign in / Sign up

Export Citation Format

Share Document