scholarly journals Radiomics and Machine Learning Can Differentiate Transient Osteoporosis from Avascular Necrosis of the Hip

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1686
Author(s):  
Michail E. Klontzas ◽  
Georgios C. Manikis ◽  
Katerina Nikiforaki ◽  
Evangelia E. Vassalou ◽  
Konstantinos Spanakis ◽  
...  

Differentiation between transient osteoporosis (TOH) and avascular necrosis (AVN) of the hip is a longstanding challenge in musculoskeletal radiology. The purpose of this study was to utilize MRI-based radiomics and machine learning (ML) for accurate differentiation between the two entities. A total of 109 hips with TOH and 104 hips with AVN were retrospectively included. Femoral heads and necks with segmented radiomics features were extracted. Three ML classifiers (XGboost, CatBoost and SVM) using 38 relevant radiomics features were trained on 70% and validated on 30% of the dataset. ML performance was compared to two musculoskeletal radiologists, a general radiologist and two radiology residents. XGboost achieved the best performance with an area under the curve (AUC) of 93.7% (95% CI from 87.7 to 99.8%) among ML models. MSK radiologists achieved an AUC of 90.6% (95% CI from 86.7% to 94.5%) and 88.3% (95% CI from 84% to 92.7%), respectively, similar to residents. The general radiologist achieved an AUC of 84.5% (95% CI from 80% to 89%), significantly lower than of XGboost (p = 0.017). In conclusion, radiomics-based ML achieved a performance similar to MSK radiologists and significantly higher compared to general radiologists in differentiating between TOH and AVN.

2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Junyi Li ◽  
Huinian Li ◽  
Xiao Ye ◽  
Li Zhang ◽  
Qingzhe Xu ◽  
...  

Abstract Background The prediction of long non-coding RNA (lncRNA) has attracted great attention from researchers, as more and more evidence indicate that various complex human diseases are closely related to lncRNAs. In the era of bio-med big data, in addition to the prediction of lncRNAs by biological experimental methods, many computational methods based on machine learning have been proposed to make better use of the sequence resources of lncRNAs. Results We developed the lncRNA prediction method by integrating information-entropy-based features and machine learning algorithms. We calculate generalized topological entropy and generate 6 novel features for lncRNA sequences. By employing these 6 features and other features such as open reading frame, we apply supporting vector machine, XGBoost and random forest algorithms to distinguish human lncRNAs. We compare our method with the one which has more K-mer features and results show that our method has higher area under the curve up to 99.7905%. Conclusions We develop an accurate and efficient method which has novel information entropy features to analyze and classify lncRNAs. Our method is also extendable for research on the other functional elements in DNA sequences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Boeckaerts ◽  
Michiel Stock ◽  
Bjorn Criel ◽  
Hans Gerstmans ◽  
Bernard De Baets ◽  
...  

AbstractNowadays, bacteriophages are increasingly considered as an alternative treatment for a variety of bacterial infections in cases where classical antibiotics have become ineffective. However, characterizing the host specificity of phages remains a labor- and time-intensive process. In order to alleviate this burden, we have developed a new machine-learning-based pipeline to predict bacteriophage hosts based on annotated receptor-binding protein (RBP) sequence data. We focus on predicting bacterial hosts from the ESKAPE group, Escherichia coli, Salmonella enterica and Clostridium difficile. We compare the performance of our predictive model with that of the widely used Basic Local Alignment Search Tool (BLAST). Our best-performing predictive model reaches Precision-Recall Area Under the Curve (PR-AUC) scores between 73.6 and 93.8% for different levels of sequence similarity in the collected data. Our model reaches a performance comparable to that of BLASTp when sequence similarity in the data is high and starts outperforming BLASTp when sequence similarity drops below 75%. Therefore, our machine learning methods can be especially useful in settings in which sequence similarity to other known sequences is low. Predicting the hosts of novel metagenomic RBP sequences could extend our toolbox to tune the host spectrum of phages or phage tail-like bacteriocins by swapping RBPs.


2019 ◽  
Vol 45 (10) ◽  
pp. 3193-3201 ◽  
Author(s):  
Yajuan Li ◽  
Xialing Huang ◽  
Yuwei Xia ◽  
Liling Long

Abstract Purpose To explore the value of CT-enhanced quantitative features combined with machine learning for differential diagnosis of renal chromophobe cell carcinoma (chRCC) and renal oncocytoma (RO). Methods Sixty-one cases of renal tumors (chRCC = 44; RO = 17) that were pathologically confirmed at our hospital between 2008 and 2018 were retrospectively analyzed. All patients had undergone preoperative enhanced CT scans including the corticomedullary (CMP), nephrographic (NP), and excretory phases (EP) of contrast enhancement. Volumes of interest (VOIs), including lesions on the images, were manually delineated using the RadCloud platform. A LASSO regression algorithm was used to screen the image features extracted from all VOIs. Five machine learning classifications were trained to distinguish chRCC from RO by using a fivefold cross-validation strategy. The performance of the classifier was mainly evaluated by areas under the receiver operating characteristic (ROC) curve and accuracy. Results In total, 1029 features were extracted from CMP, NP, and EP. The LASSO regression algorithm was used to screen out the four, four, and six best features, respectively, and eight features were selected when CMP and NP were combined. All five classifiers had good diagnostic performance, with area under the curve (AUC) values greater than 0.850, and support vector machine (SVM) classifier showed a diagnostic accuracy of 0.945 (AUC 0.964 ± 0.054; sensitivity 0.999; specificity 0.800), showing the best performance. Conclusions Accurate preoperative differential diagnosis of chRCC and RO can be facilitated by a combination of CT-enhanced quantitative features and machine learning.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicholas Nuechterlein ◽  
Beibin Li ◽  
Abdullah Feroze ◽  
Eric C Holland ◽  
Linda Shapiro ◽  
...  

Abstract Background Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discriminate between these molecular subtypes has yet to be established. Methods Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic resonance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers were trained to distinguish molecular subtypes using our feature selection method, which was compared to least absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance thresholding. Results We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis (PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another. Conclusions We successfully trained a machine learning model that allows for relevant targeted feature extraction from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient groups.


2021 ◽  
pp. 197140092199897
Author(s):  
Sarv Priya ◽  
Caitlin Ward ◽  
Thomas Locke ◽  
Neetu Soni ◽  
Ravishankar Pillenahalli Maheshwarappa ◽  
...  

Objectives To evaluate the diagnostic performance of multiple machine learning classifier models derived from first-order histogram texture parameters extracted from T1-weighted contrast-enhanced images in differentiating glioblastoma and primary central nervous system lymphoma. Methods Retrospective study with 97 glioblastoma and 46 primary central nervous system lymphoma patients. Thirty-six different combinations of classifier models and feature selection techniques were evaluated. Five-fold nested cross-validation was performed. Model performance was assessed for whole tumour and largest single slice using receiver operating characteristic curve. Results The cross-validated model performance was relatively similar for the top performing models for both whole tumour and largest single slice (area under the curve 0.909–0.924). However, there was a considerable difference between the worst performing model (logistic regression with full feature set, area under the curve 0.737) and the highest performing model for whole tumour (least absolute shrinkage and selection operator model with correlation filter, area under the curve 0.924). For single slice, the multilayer perceptron model with correlation filter had the highest performance (area under the curve 0.914). No significant difference was seen between the diagnostic performance of the top performing model for both whole tumour and largest single slice. Conclusions T1 contrast-enhanced derived first-order texture analysis can differentiate between glioblastoma and primary central nervous system lymphoma with good diagnostic performance. The machine learning performance can vary significantly depending on the model and feature selection methods. Largest single slice and whole tumour analysis show comparable diagnostic performance.


2020 ◽  
Vol 23 (4) ◽  
pp. 140-145
Author(s):  
Chenlu Li ◽  
Delia A Gheorghe ◽  
John E Gallacher ◽  
Sarah Bauermeister

BackgroundConceptualising comorbidity is complex and the term is used variously. Here, it is the coexistence of two or more diagnoses which might be defined as ‘chronic’ and, although they may be pathologically related, they may also act independently. Of interest here is the comorbidity of common psychiatric disorders and impaired cognition.ObjectivesTo examine whether anxiety and/or depression are/is important longitudinal predictors of cognitive change.MethodsUK Biobank participants used at three time points (n=502 664): baseline, first follow-up (n=20 257) and first imaging study (n=40 199). Participants with no missing data were 1175 participants aged 40–70 years, 41% women. Machine learning was applied and the main outcome measure of reaction time intraindividual variability (cognition) was used.FindingsUsing the area under the receiver operating characteristic curve, the anxiety model achieves the best performance with an area under the curve (AUC) of 0.68, followed by the depression model with an AUC of 0.63. The cardiovascular and diabetes model, and the covariates model have weaker performance in predicting cognition, with an AUC of 0.60 and 0.56, respectively.ConclusionsOutcomes suggest that psychiatric disorders are more important comorbidities of long-term cognitive change than diabetes and cardiovascular disease, and demographic factors. Findings suggest that psychiatric disorders (anxiety and depression) may have a deleterious effect on long-term cognition and should be considered as an important comorbid disorder of cognitive decline.Clinical implicationsImportant predictive effects of poor mental health on longitudinal cognitive decline should be considered in secondary and also primary care.


2021 ◽  
Author(s):  
Patrycja Krawczuk ◽  
George Papadimitriou ◽  
Ryan Tanaka ◽  
Tu Mai Anh Do ◽  
Srujana Subramanya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document