scholarly journals Non-Classical Correlations in n-Cycle Setting

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 134 ◽  
Author(s):  
Kishor Bharti ◽  
Maharshi Ray ◽  
Leong-Chuan Kwek

Quantum communication and quantum computation form the two crucial facets of quantum information theory. While entanglement and its manifestation as Bell non-locality have been proved to be vital for communication tasks, contextuality (a generalisation of Bell non-locality) has shown to be the crucial resource behind various models of quantum computation. The practical and fundamental aspects of these non-classical resources are still poorly understood despite decades of research. We explore non-classical correlations exhibited by some of these quantum as well as super-quantum resources in the n-cycle setting. In particular, we focus on correlations manifested by Kochen–Specker–Klyachko box (KS box), scenarios involving n-cycle non-contextuality inequalities and Popescu–Rohlrich boxes (PR box). We provide the criteria for optimal classical simulation of a KS box of arbitrary n dimension. The non-contextuality inequalities are analysed for n-cycle setting, and the condition for the quantum violation for odd as well as even n-cycle is discussed. We offer a simple extension of even cycle non-contextuality inequalities to the phase space case. Furthermore, we simulate a generalised PR box using KS box and provide some interesting insights. Towards the end, we discuss a few possible interesting open problems for future research. Our work connects generalised PR boxes, arbitrary dimensional KS boxes, and n-cycle non-contextuality inequalities and thus provides the pathway for the study of these contextual and nonlocal resources at their junction.

Games ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 45
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Mariangela Gangemi ◽  
Domenica Stefania Merenda ◽  
Bruno Antonio Pansera

This work aims to provide different perspectives on the relationships between cooperative game theory and the research field concerning climate change dynamics. New results are obtained in the framework of competitive bargaining solutions and related issues, moving from a cooperative approach to a competitive one. Furthermore, the dynamics of balanced and super-balanced games are exposed, with particular reference to coalitions. Some open problems are presented to aid future research in this area.


1999 ◽  
Vol 10 (07) ◽  
pp. 1205-1228 ◽  
Author(s):  
E. V. KRISHNAMURTHY

The important requirements are stated for the success of quantum computation. These requirements involve coherent preserving Hamiltonians as well as exact integrability of the corresponding Feynman path integrals. Also we explain the role of metric entropy in dynamical evolutionary system and outline some of the open problems in the design of quantum computational systems. Finally, we observe that unless we understand quantum nondemolition measurements, quantum integrability, quantum chaos and the direction of time arrow, the quantum control and computational paradigms will remain elusive and the design of systems based on quantum dynamical evolution may not be feasible.


2021 ◽  
Vol 54 (5) ◽  
pp. 1-35
Author(s):  
Shubham Pateria ◽  
Budhitama Subagdja ◽  
Ah-hwee Tan ◽  
Chai Quek

Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of challenging long-horizon decision-making tasks into simpler subtasks. During the past years, the landscape of HRL research has grown profoundly, resulting in copious approaches. A comprehensive overview of this vast landscape is necessary to study HRL in an organized manner. We provide a survey of the diverse HRL approaches concerning the challenges of learning hierarchical policies, subtask discovery, transfer learning, and multi-agent learning using HRL. The survey is presented according to a novel taxonomy of the approaches. Based on the survey, a set of important open problems is proposed to motivate the future research in HRL. Furthermore, we outline a few suitable task domains for evaluating the HRL approaches and a few interesting examples of the practical applications of HRL in the Supplementary Material.


2021 ◽  
Vol 23 (2) ◽  
pp. 13-22
Author(s):  
Debmalya Mandal ◽  
Sourav Medya ◽  
Brian Uzzi ◽  
Charu Aggarwal

Graph Neural Networks (GNNs), a generalization of deep neural networks on graph data have been widely used in various domains, ranging from drug discovery to recommender systems. However, GNNs on such applications are limited when there are few available samples. Meta-learning has been an important framework to address the lack of samples in machine learning, and in recent years, researchers have started to apply meta-learning to GNNs. In this work, we provide a comprehensive survey of different metalearning approaches involving GNNs on various graph problems showing the power of using these two approaches together. We categorize the literature based on proposed architectures, shared representations, and applications. Finally, we discuss several exciting future research directions and open problems.


Robotica ◽  
2004 ◽  
Vol 22 (5) ◽  
pp. 533-545 ◽  
Author(s):  
M. Benosman ◽  
G. Le Vey

A survey of the field of control for flexible multi-link robots is presented. This research area has drawn great attention during the last two decades, and seems to be somewhat less “attractive” now, due to the many satisfactory results already obtained, but also because of the complex nature of the remaining open problems. Thus it seems that the time has come to try to deliver a sort of “state of the art” on this subject, although an exhaustive one is out of scope here, because of the great amount of publications. Instead, we survey the most salient progresses – in our opinion – approximately during the last decade, that are representative of the essential different ideas in the field. We proceed along with the exposition of material coming from about 119 included references. We do not pretend to deeply present each of the methods quoted hereafter; however, our goal is to briefly introduce most of the existing methods and to refer the interested reader to more detailed presentations for each scheme. To begin with, a now well-established classification of the flexible arms control goals is given. It is followed by a presentation of different control strategies, indicating in each case whether the approach deals with the one-link case, which can be successfully treated via linear models, or with the multi-link case which necessitates nonlinear, more complex, models. Some possible issues for future research are given in conclusion.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 235-256 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
Th. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.


2021 ◽  
Vol 1 (1) ◽  
pp. 78-88
Author(s):  
Xiaoying Tang ◽  
Chenxi Sun ◽  
Suzhi Bi ◽  
Shuoyao Wang ◽  
Angela Yingjun Zhang

The rapid growth of electric vehicles (EVs) has promised a next-generation transportation system with reduced carbon emission. The fast development of EVs and charging facilities is driving the evolution of Internet of Vehicles (IoV) to Internet of Electric Vehicles (IoEV). IoEV benefits from both smart grid and Internet of Things (IoT) technologies which provide advanced bi-directional charging services and real-time data processing capability, respectively. The major design challenges of the IoEV charging control lie in the randomness of charging events and the mobility of EVs. In this article, we present a holistic review on advanced bi-directional EV charging control algorithms. For Grid-to-Vehicle (G2V), we introduce the charging control problem in two scenarios: 1) Operation of a single charging station and 2) Operation of multiple charging stations in coupled transportation and power networks. For Vehicle-to-Grid (V2G), we discuss how EVs can perform energy trading in the electricity market and provide ancillary services to the power grid. Besides, a case study is provided to illustrate the economic benefit of the joint optimization of routing and charging scheduling of multiple EVs in the IoEV. Last but not the least, we will highlight some open problems and future research directions of charging scheduling problems for IoEVs.


2004 ◽  
Vol 20 (03) ◽  
pp. 200-210 ◽  
Author(s):  
Frank Roland ◽  
Luciano Manzon ◽  
Pentti Kujala ◽  
Markus Brede ◽  
Jan Weitzenbock

Joining processes are an important key factor for the competitiveness of European shipbuilders. They not only represent a significant portion of the total man hour consumption in hull production and outfitting, but due to heat distortions they also have a significant impact on nonproductive work operations, such as straightening and fitting. Those operations can interfere with on-board outfitting and increase lead time and construction cost. In addition to their contribution to shipyard productivity, joining techniques have a significant impact on material properties and thus on product performance and quality. Those factors become increasingly important for complex structures using comparatively thin and high-strength materials. Considering the importance of efficient joining, European shipbuilders in the past decade have invested significant efforts to develop new joining techniques, such as laser welding, adhesive bonding, and mechanical joining. Based on research results, practical industrial applications have been developed recently. After reviewing the impact of joining processes on competitiveness, the article will summarize a number of past and ongoing research projects with special focus on design methods, process and equipment development, fatigue strength of joints, quality assurance, and approval. It will then present a number of recent applications of new joining techniques in European shipyards. Finally, open problems and future research needs will be briefly discussed. The article is based on a joint effort of leading European experts and will focus on laser and laser hybrid welding, adhesive bonding, and mechanical joining


Sign in / Sign up

Export Citation Format

Share Document