scholarly journals Towards Optimal Dissemination of Emergency Messages in Internet of Vehicles: A Dynamic Clustering-Based Approach

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 979
Author(s):  
Nadjet Azzaoui ◽  
Ahmed Korichi ◽  
Bouziane Brik ◽  
Med el Amine Fekair

In this paper, we target dissemination issues of emergency messages in a highly dynamic Internet of Vehicles (IoV) network. IoV is emerging as a new class of vehicular networks to optimize road safety as well as users’ comfort. In such a context, forwarding emergency messages through vehicle-to-vehicle communications (V2V) plays a vital role in enabling road safety-related applications. For instance, when an accident occurs, forwarding such information in real time will help to avoid other accidents in addition to avoiding congestion of network traffic. Thus, dissemination of emergency information is a major concern. However, on the one hand, vehicle density has increased in the last decade which may lead to several issues including message collisions, broadcast storm, and the problem of hidden nodes. On the other hand, high mobility of vehicles and hence dynamic changes of network topology result in failure of dissemination of emergency packets. To overcome these problems, we propose a new dissemination scheme of emergency packets by vehicles equipped with both DSRC and cellular LTE wireless communication capabilities. Our scheme is based on a dynamic clustering strategy, which includes a new cluster head selection algorithm to deal with the broadcast storm problem. Furthermore, our selection algorithm enables not only the election of the most stable vehicles as cluster heads, and hence their exploitation in forwarding the emergency information, but also the avoidance of packet collisions. We simulated our scheme in an urban environment and compared it with other data dissemination schemes. Obtained results show the efficiency of our scheme in minimizing collision and broadcast storm problems, while improving latency, packet delivery ratio and data throughput, as compared to other schemes.

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986158 ◽  
Author(s):  
Muhammad Ali ◽  
Asad W Malik ◽  
Anis U Rahman ◽  
Sohail Iqbal ◽  
Mian M Hamayun

With the advancement in communication technologies, Internet of vehicles presents a new set of opportunities to efficiently manage transportation problems using vehicle-to-vehicle communication. However, high mobility in vehicular networks causes frequent changes in network topology, which leads to network instability. This frequently results in emergency messages failing to reach the target vehicles. To overcome this problem, we propose a data dissemination scheme for such messages in vehicular networks, based on clustering and position-based broadcast techniques. The vehicles are dynamically clustered to handle the broadcast storm problem, and a position-based technique is proposed to reduce communication delays, resulting in timely dissemination of emergency messages. The simulation results show that the transmission delay, information coverage, and packet delivery ratios improved up to 14%, 9.7%, and 5.5%, respectively. These results indicate that the proposed scheme is promising as it outperforms existing techniques.


2009 ◽  
Vol 10 (04) ◽  
pp. 435-457
Author(s):  
ATHANASIOS KINALIS ◽  
SOTIRIS NIKOLETSEAS

Motivated by emerging applications, we consider sensor networks where the sensors themselves (not just the sinks) are mobile. Furthermore, we focus on mobility scenarios characterized by heterogeneous, highly changing mobility roles in the network. To capture these high dynamics of diverse sensory motion we propose a novel network parameter, the mobility level, which, although simple and local, quite accurately takes into account both the spatial and speed characteristics of motion. We then propose adaptive data dissemination protocols that use the mobility level estimation to optimize performance, by basically exploiting high mobility (redundant message ferrying) as a cost-effective replacement of flooding, e.g. the sensors tend to dynamically propagate less data in the presence of high mobility, while nodes of high mobility are favored for moving data around. These dissemination schemes are enhanced by a distance-sensitive probabilistic message flooding inhibition mechanism that further reduces communication cost, especially for fast nodes of high mobility level, and as distance to data destination decreases. Our simulation findings demonstrate significant performance gains of our protocols compared to non-adaptive protocols, i.e. adaptation increases the success rate and reduces latency (even by 15%) while at the same time significantly reducing energy dissipation (in most cases by even 40%). Also, our adaptive schemes achieve significantly higher message delivery ratio and satisfactory energy-latency trade-offs when compared to flooding when sensor nodes have limited message queues.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaolan Tang ◽  
Zhi Geng ◽  
Wenlong Chen ◽  
Mojtaba Moharrer

Vehicular networks, as a significant technology in intelligent transportation systems, improve the convenience, efficiency, and safety of driving in smart cities. However, because of the high velocity, the frequent topology change, and the limited bandwidth, it is difficult to efficiently propagate data in vehicular networks. This paper proposes a data dissemination scheme based on fuzzy logic and network coding for vehicular networks, named SFN. It uses fuzzy logic to compute a transmission ability for each vehicle by comprehensively considering the effects of three factors: the velocity change rate, the velocity optimization degree, and the channel quality. Then, two nodes with high abilities are selected as primary backbone and slave backbone in every road segment, which propagate data to other vehicles in this segment and forward them to the backbones in the next segment. The backbone network helps to increase the delivery ratio and avoid invalid transmissions. Additionally, network coding is utilized to reduce transmission overhead and accelerate data retransmission in interbackbone forwarding and intrasegment broadcasting. Experiments show that, compared with existing schemes, SFN has a high delivery ratio and a short dissemination delay, while the backbone network keeps high reliability.


Author(s):  
Paola Ambrosi ◽  
Andrea Becchetti ◽  
Bhavani S ◽  
Srimathi C

: In vehicular ad-hoc network (VANET), to disseminate gathered data’s traffic information and road conditions are forward from source vehicle to many destination vehicles on the road. The process of data dissemination plays important role in VANET and used to improve the quality of travel to avoid unwanted accidents. The multiple routine messages are needed to provide the required safety and non-safety applications. Many existing protocols use such type of message activities to ensure the fair road safety without concentrate on network congestion. In this paper, we investigate the congestion problem due to the control overhead messages and propose an optimal adaptive data dissemination protocol (OAddP). The proposed OAddP utilize the optimal clustering and control overhead reduction algorithms to maximize the data dissemination quality and minimize the network congestion. The chaotic fish swarm optimization (CFSO) algorithm used to perform a clustering, which consist of cluster formation and cluster head (CH) selection. Here, the CH node acts as candidate (relay) node to forward data from source-destination. Then, a predictor based decision making (PDM) algorithm used to reduce the control overhead messages in network. Network simulator (NS-2) results show that the proposed OAddP protocol perform very efficient than existing protocols in terms of end-to-end delay, success ratio, redundancy rate, collision rate, number of control OH messages, propagation distance and dissemination efficiency.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2688 ◽  
Author(s):  
Daichi Araki ◽  
Takuya Yoshihiro

Vehicular Ad hoc NETworks (VANET) has been well studied for a long time as a means to exchange information among moving vehicles. As vehicular networks do not always have connected paths, vehicular networks can be regarded as a kind of delay-tolerant networks (DTNs) when the density of vehicles is not high enough. In this case, packet delivery ratio degrades significantly so that reliability of networks as an information infrastructure is hardly held. Past studies such as SADV (Static-node Assisted Data dissemination protocol for Vehicular networks) and RDV (Reliable Distance-Vector routing) showed that the assistance of low-cost unwired static nodes located at intersections, which work as routers to provide distance-vector or link-state routing functions, significantly improves the communication performance. However, they still have problems: SADV does not provide high-enough delivery ratio and RDV suffers from traffic concentration on the shortest paths. In this paper, we propose MP-RDV (Multi-Path RDV) by extending RDV with multiple paths utilization to improve performance against both of those problems. In addition, we apply a delay routing metric, which is one of the major metrics in this field, to RDV to compare performance with the traffic-volume metric, which is a built-in metric of RDV. Evaluation results show that MP-RDV achieves high load-balancing performance, larger network capacity, lower delivery delay, and higher fault tolerance against topology changes compared to RDV. As for routing metrics, we showed that the traffic-volume metric is better than the delay one in RDV because delay measurement is less stable against traffic fluctuation.


2021 ◽  
Vol 14 (2) ◽  
pp. 287-301
Author(s):  
Ravi Kumar D.N.S. ◽  
Barani S.

PurposeThe purpose of this paper is to introduce a new data dissemination model in order to improve the performance of transmission in VANET. It proposes a protocol named Epidemic and Transmission-Segment-based Geographic Routing (ETSGR) and outlining the issues due to high mobility of nodes and uncertain physical topologies in the network. The proposed ETSGR is mainly used to analyze the vehicle state, direction, distance, traffic density and link quality of the network.Design/methodology/approachThis research work based on ETSGR protocol mainly uses epidemic algorithm in order to find the vehicle state based on susceptible, infected and recovered (SIR) model. Furthermore, the vehicle position and finding the head node in the network is utilized using the transmission segment protocol based on geographic routing and analyses each node to form the segments and find the destination to transmit the data in timely manner.FindingsThe paper provides the enhancement of the performance based on some metrics such as end-to-end delay that obtained 0.62%, data throughput as 32.3%, packet delivery ratio as 67% and one-hop communication as 13%. The proposed ETSGR protocol analyzes the state of the vehicle correctly and each node segmented to transmit the data with the timely manner and obtaining reliable performance even with high mobility of nodes in the network.Research limitations/implicationsThe proposed ETSGR protocol may have some limitation when considering the timing which should improve even in increasing many number of vehicles and different road segments.Practical implicationsThis paper includes some suggestions for the practical deployment of the approach in which a real-time traffic analysis can be evaluated for taking prior actions during an emergency situation and proper dissemination of data in timely manner can help utilize the guidance of proper planning of roads.Originality/valueThis research fulfills an enhanced protocol to improve the performance of data dissemination.


2021 ◽  
Author(s):  
Ahlam Hashim

Abstract Mobile Ad-hoc Networks (MANETs) has gained remarkable appreciation during the last decade because of its high flexibility. Due to high mobility and unpredictable topology changes, most of the existing routing protocols are unable to adapt to these changes and efficient route selection becomes a challenging task. The existing routing protocols incur high control overhead during route discovery process, tendency to select an unreliable route and high data packet loss during route maintenance. Therefore, this paper presents A Congestion-aware and Predictive Geo-casting Routing Mechanism (CPGR) for MANET that optimally utilize the constrained network resources and reliably detect high-quality links. CPGR exploits a multi-facet routing strategy that takes into consideration the congestion level, relatively higher signal strength, and hop-counts of neigh- boring nodes while making routing decisions. This strategy not only ensures data dissemination via high quality nodes but also balances out resource consumption among nodes while traversing through shorter paths. Demonstrated by simulation results in NS-2, CPGR achieves improved performance in terms of end-to-end delay, control overhead, and packet delivery ratio as compared to existing solutions.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1588
Author(s):  
Sami Ullah ◽  
Ghulam Abbas ◽  
Muhammad Waqas ◽  
Ziaul Haq Abbas ◽  
Shanshan Tu ◽  
...  

In Vehicular Adhoc Networks (VANETs), disseminating Emergency Messages (EMs) to a maximum number of vehicles with low latency and low packet loss is critical for road safety. However, avoiding the broadcast storm and dealing with large-scale dissemination of EMs in urban VANETs, particularly at intersections, are the challenging tasks. The problems become even more challenging in a dense network. We propose an Effective Emergency Message Dissemination Scheme (EEMDS) for urban VANETs. The scheme is based on our mobility metrics to avoid communication overhead and to maintain a stable cluster structure. Every vehicle takes into account its direction angle and path loss factor for selecting a suitable cluster head. Moreover, we introduce estimated link stability to choose a suitable relay vehicle that reduces the number of rebroadcasts and communication congestion in the network. Simulation results show that EEMDS provides an acceptable end-to-end delay, information coverage, and packet delivery ratio compared to the eminent EM dissemination schemes.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Sara Najafzadeh ◽  
Norafida Binti Ithnin ◽  
Shukor Abd Razak

This paper starts with an overview of vehicular ad hoc networks (VANETs) and their characteristics. Then this paper reviews diverse applications of VANETs and the requirements of these applications. In addition it reviews VANETs standards, different broadcasting presented in a variety of studies, and also associated issues with data dissemination in connected and fragmented vehicular networks to solve broadcast storm problem and temporary disconnected VANETs. The discussion will be about the encountered challenges and presented solutions with respect to the related issues, based on the literature and strength and weakness of each protocol.


Author(s):  
R. Shiddharthy Et.al

Vehicular Ad hoc Network (VANET) is one of the subset of Mobile Ad hoc Network (MANET) and it is a self-organised system with a group of vehicles, which are capable of short-range communication using On Board Unit (OBU). This unit is comprised with the vehicles that are possible to communicate with the nearby vehicles. VANETs rely on heavy broadcast transmission due to sharing data (messages) between the nearby vehicles about the traffic, collision and so on. This redundant information spoils the nature of VANET that affects the inter-vehicular communication, rebroadcasting and information on collision. This message transmission increases largely as the number of vehicles increases. This problem is typically named as broadcast storm and it is relatively reduced through the proposed Selective Reliable Communication (SRC) Protocol.  Through a reliable communication, packets are retransmitted to reduce a number of transmission in the network within the acceptable level of QoS. The proposed SRC protocol automatically detect the vehicle clusters as “Zone of Interest”. Generally, the proposed protocol forwards the packets to the cluster-heads and the cluster-head forwards the packets to the cluster-members. The proposed protocol outperforms than the existing protocols in terms of Throughput, Packet Delivery Ratio (PDR) and Average delay.


Sign in / Sign up

Export Citation Format

Share Document