scholarly journals Automated Quantum Hardware Selection for Quantum Workflows

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 984
Author(s):  
Benjamin Weder ◽  
Johanna Barzen ◽  
Frank Leymann ◽  
Marie Salm

The execution of a quantum algorithm typically requires various classical pre- and post-processing tasks. Hence, workflows are a promising means to orchestrate these tasks, benefiting from their reliability, robustness, and features, such as transactional processing. However, the implementations of the tasks may be very heterogeneous and they depend on the quantum hardware used to execute the quantum circuits of the algorithm. Additionally, today’s quantum computers are still restricted, which limits the size of the quantum circuits that can be executed. As the circuit size often depends on the input data of the algorithm, the selection of quantum hardware to execute a quantum circuit must be done at workflow runtime. However, modeling all possible alternative tasks would clutter the workflow model and require its adaptation whenever a new quantum computer or software tool is released. To overcome this problem, we introduce an approach to automatically select suitable quantum hardware for the execution of quantum circuits in workflows. Furthermore, it enables the dynamic adaptation of the workflows, depending on the selection at runtime based on reusable workflow fragments. We validate our approach with a prototypical implementation and a case study demonstrating the hardware selection for Simon’s algorithm.

2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


Author(s):  
Giovanni Acampora ◽  
Roberto Schiattarella

AbstractQuantum computers have become reality thanks to the effort of some majors in developing innovative technologies that enable the usage of quantum effects in computation, so as to pave the way towards the design of efficient quantum algorithms to use in different applications domains, from finance and chemistry to artificial and computational intelligence. However, there are still some technological limitations that do not allow a correct design of quantum algorithms, compromising the achievement of the so-called quantum advantage. Specifically, a major limitation in the design of a quantum algorithm is related to its proper mapping to a specific quantum processor so that the underlying physical constraints are satisfied. This hard problem, known as circuit mapping, is a critical task to face in quantum world, and it needs to be efficiently addressed to allow quantum computers to work correctly and productively. In order to bridge above gap, this paper introduces a very first circuit mapping approach based on deep neural networks, which opens a completely new scenario in which the correct execution of quantum algorithms is supported by classical machine learning techniques. As shown in experimental section, the proposed approach speeds up current state-of-the-art mapping algorithms when used on 5-qubits IBM Q processors, maintaining suitable mapping accuracy.


2020 ◽  
Vol 19 (10) ◽  
Author(s):  
Laszlo Gyongyosi

Abstract Superconducting gate-model quantum computer architectures provide an implementable model for practical quantum computations in the NISQ (noisy intermediate scale quantum) technology era. Due to hardware restrictions and decoherence, generating the physical layout of the quantum circuits of a gate-model quantum computer is a challenge. Here, we define a method for layout generation with a decoherence dynamics estimation in superconducting gate-model quantum computers. We propose an algorithm for the optimal placement of the quantum computational blocks of gate-model quantum circuits. We study the effects of capacitance interference on the distribution of the Gaussian noise in the Josephson energy.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 592
Author(s):  
Piotr Czarnik ◽  
Andrew Arrasmith ◽  
Patrick J. Coles ◽  
Lukasz Cincio

Achieving near-term quantum advantage will require accurate estimation of quantum observables despite significant hardware noise. For this purpose, we propose a novel, scalable error-mitigation method that applies to gate-based quantum computers. The method generates training data {Xinoisy,Xiexact} via quantum circuits composed largely of Clifford gates, which can be efficiently simulated classically, where Xinoisy and Xiexact are noisy and noiseless observables respectively. Fitting a linear ansatz to this data then allows for the prediction of noise-free observables for arbitrary circuits. We analyze the performance of our method versus the number of qubits, circuit depth, and number of non-Clifford gates. We obtain an order-of-magnitude error reduction for a ground-state energy problem on 16 qubits in an IBMQ quantum computer and on a 64-qubit noisy simulator.


2018 ◽  
Vol 6 (2) ◽  
pp. 694-716
Author(s):  
Yavuz ÖZDEMİR ◽  
Kemal Gökhan NALBANT

The main objective in the selection of personnel is to select the most appropriate candidate for a job. Personnel selection for human resources management is a very important issue.The aim of this paper is to determine the best-performing personnel for promotion using an application of a Multi Criteria Decision Making(MCDM) method, generalized Choquet integral, to a real personnel selection problem of a case study in Turkey and 17 alternatives are ranked according to personnel selection criteria (22 subcriteria are classified under 5 main criteria). The main contribution of this paper is to determine the interdependency among main criteria and subcriteria, the nonlinear relationship among them and the environmental uncertainties while selecting personnel alternatives using the generalized Choquet integral method with the experts’ view. To the authors’ knowledge, this will be the first study which uses the generalized Choquet Integral methodology for human resources. 


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 291 ◽  
Author(s):  
Nikitas Stamatopoulos ◽  
Daniel J. Egger ◽  
Yue Sun ◽  
Christa Zoufal ◽  
Raban Iten ◽  
...  

We present a methodology to price options and portfolios of options on a gate-based quantum computer using amplitude estimation, an algorithm which provides a quadratic speedup compared to classical Monte Carlo methods. The options that we cover include vanilla options, multi-asset options and path-dependent options such as barrier options. We put an emphasis on the implementation of the quantum circuits required to build the input states and operators needed by amplitude estimation to price the different option types. Additionally, we show simulation results to highlight how the circuits that we implement price the different option contracts. Finally, we examine the performance of option pricing circuits on quantum hardware using the IBM Q Tokyo quantum device. We employ a simple, yet effective, error mitigation scheme that allows us to significantly reduce the errors arising from noisy two-qubit gates.


Author(s):  
Riccardo Rasconi ◽  
Angelo Oddi

Quantum Computing represents the next big step towards speed boost in computation, which promises major breakthroughs in several disciplines including Artificial Intelligence. This paper investigates the performance of a genetic algorithm to optimize the realization (compilation) of nearest-neighbor compliant quantum circuits. Currrent technological limitations (e.g., decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized, and therefore the makespanminimization problem of compiling quantum algorithms on present or future quantum machines is dragging increasing attention in the AI community. In our genetic algorithm, a solution is built utilizing a novel chromosome encoding where each gene controls the iterative selection of a quantum gate to be inserted in the solution, over a lexicographic double-key ranking returned by a heuristic function recently published in the literature.Our algorithm has been tested on a set of quantum circuit benchmark instances of increasing sizes available from the recent literature. We demonstrate that our genetic approach obtains very encouraging results that outperform the solutions obtained in previous research against the same benchmark, succeeding in significantly improving the makespan values for a great number of instances.


2003 ◽  
Vol 03 (04) ◽  
pp. C9-C17
Author(s):  
MINORU FUJISHIMA

Quantum computers are believed to perform high-speed calculations, compared with conventional computers. However, the quantum computer solves NP (non-deterministic polynomial) problems at a high speed only when a periodic function can be used in the process of calculation. To overcome the restrictions stemming from the quantum algorithm, we are studying the emulation by a LSI (large scale integrated circuit). In this report, first, it is explained why a periodic function is required for the algorithm of a quantum computer. Then, it is shown that the LSI emulator can solve NP problems at a high speed without using a periodic function.


Sign in / Sign up

Export Citation Format

Share Document