scholarly journals DC-STGCN: Dual-Channel Based Graph Convolutional Networks for Network Traffic Forecasting

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1014
Author(s):  
Chengsheng Pan ◽  
Jiang Zhu ◽  
Zhixiang Kong ◽  
Huaifeng Shi ◽  
Wensheng Yang

Network traffic forecasting is essential for efficient network management and planning. Accurate long-term forecasting models are also essential for proactive control of upcoming congestion events. Due to the complex spatial-temporal dependencies between traffic flows, traditional time series forecasting models are often unable to fully extract the spatial-temporal characteristics between the traffic flows. To address this issue, we propose a novel dual-channel based graph convolutional network (DC-STGCN) model. The proposed model consists of two temporal components that characterize the daily and weekly correlation of the network traffic. Each of these two components contains a spatial-temporal characteristics extraction module consisting of a dual-channel graph convolutional network (DCGCN) and a gated recurrent unit (GRU). The DCGCN further consists of an adjacency feature extraction module (AGCN) and a correlation feature extraction module (PGCN) to capture the connectivity between nodes and the proximity correlation, respectively. The GRU further extracts the temporal characteristics of the traffic. The experimental results based on real network data sets show that the prediction accuracy of the DC-STGCN model overperforms the existing baseline and is capable of making long-term predictions.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1085
Author(s):  
Kaifeng Zhang ◽  
Dan Li ◽  
Jiayun Huang ◽  
Yifei Chen

The detection of pig behavior helps detect abnormal conditions such as diseases and dangerous movements in a timely and effective manner, which plays an important role in ensuring the health and well-being of pigs. Monitoring pig behavior by staff is time consuming, subjective, and impractical. Therefore, there is an urgent need to implement methods for identifying pig behavior automatically. In recent years, deep learning has been gradually applied to the study of pig behavior recognition. Existing studies judge the behavior of the pig only based on the posture of the pig in a still image frame, without considering the motion information of the behavior. However, optical flow can well reflect the motion information. Thus, this study took image frames and optical flow from videos as two-stream input objects to fully extract the temporal and spatial behavioral characteristics. Two-stream convolutional network models based on deep learning were proposed, including inflated 3D convnet (I3D) and temporal segment networks (TSN) whose feature extraction network is Residual Network (ResNet) or the Inception architecture (e.g., Inception with Batch Normalization (BN-Inception), InceptionV3, InceptionV4, or InceptionResNetV2) to achieve pig behavior recognition. A standard pig video behavior dataset that included 1000 videos of feeding, lying, walking, scratching and mounting from five kinds of different behavioral actions of pigs under natural conditions was created. The dataset was used to train and test the proposed models, and a series of comparative experiments were conducted. The experimental results showed that the TSN model whose feature extraction network was ResNet101 was able to recognize pig feeding, lying, walking, scratching, and mounting behaviors with a higher average of 98.99%, and the average recognition time of each video was 0.3163 s. The TSN model (ResNet101) is superior to the other models in solving the task of pig behavior recognition.


2021 ◽  
Vol 10 (7) ◽  
pp. 485
Author(s):  
Jiandong Bai ◽  
Jiawei Zhu ◽  
Yujiao Song ◽  
Ling Zhao ◽  
Zhixiang Hou ◽  
...  

Accurate real-time traffic forecasting is a core technological problem against the implementation of the intelligent transportation system. However, it remains challenging considering the complex spatial and temporal dependencies among traffic flows. In the spatial dimension, due to the connectivity of the road network, the traffic flows between linked roads are closely related. In the temporal dimension, although there exists a tendency among adjacent time points, the importance of distant time points is not necessarily less than that of recent ones, since traffic flows are also affected by external factors. In this study, an attention temporal graph convolutional network (A3T-GCN) was proposed to simultaneously capture global temporal dynamics and spatial correlations in traffic flows. The A3T-GCN model learns the short-term trend by using the gated recurrent units and learns the spatial dependence based on the topology of the road network through the graph convolutional network. Moreover, the attention mechanism was introduced to adjust the importance of different time points and assemble global temporal information to improve prediction accuracy. Experimental results in real-world datasets demonstrate the effectiveness and robustness of the proposed A3T-GCN. We observe the improvements in RMSE of 2.51–46.15% and 2.45–49.32% over baselines for the SZ-taxi and Los-loop, respectively. Meanwhile, the Accuracies are 0.95–89.91% and 0.26–10.37% higher than the baselines for the SZ-taxi and Los-loop, respectively.


2020 ◽  
Vol 34 (04) ◽  
pp. 3529-3536 ◽  
Author(s):  
Weiqi Chen ◽  
Ling Chen ◽  
Yu Xie ◽  
Wei Cao ◽  
Yusong Gao ◽  
...  

Traffic forecasting is of great importance to transportation management and public safety, and very challenging due to the complicated spatial-temporal dependency and essential uncertainty brought about by the road network and traffic conditions. Latest studies mainly focus on modeling the spatial dependency by utilizing graph convolutional networks (GCNs) throughout a fixed weighted graph. However, edges, i.e., the correlations between pair-wise nodes, are much more complicated and interact with each other. In this paper, we propose the Multi-Range Attentive Bicomponent GCN (MRA-BGCN), a novel deep learning model for traffic forecasting. We first build the node-wise graph according to the road network distance and the edge-wise graph according to various edge interaction patterns. Then, we implement the interactions of both nodes and edges using bicomponent graph convolution. The multi-range attention mechanism is introduced to aggregate information in different neighborhood ranges and automatically learn the importance of different ranges. Extensive experiments on two real-world road network traffic datasets, METR-LA and PEMS-BAY, show that our MRA-BGCN achieves the state-of-the-art results.


Author(s):  
Elshan Mustafayev ◽  
Rustam Azimov

Introduction. The implementation of information technologies in various spheres of public life dictates the creation of efficient and productive systems for entering information into computer systems. In such systems it is important to build an effective recognition module. At the moment, the most effective method for solving this problem is the use of artificial multilayer neural and convolutional networks. The purpose of the paper. This paper is devoted to a comparative analysis of the recognition results of handwritten characters of the Azerbaijani alphabet using neural and convolutional neural networks. Results. The analysis of the dependence of the recognition results on the following parameters is carried out: the architecture of neural networks, the size of the training base, the choice of the subsampling algorithm, the use of the feature extraction algorithm. To increase the training sample, the image augmentation technique was used. Based on the real base of 14000 characters, the bases of 28000, 42000 and 72000 characters were formed. The description of the feature extraction algorithm is given. Conclusions. Analysis of recognition results on the test sample showed: as expected, convolutional neural networks showed higher results than multilayer neural networks; the classical convolutional network LeNet-5 showed the highest results among all types of neural networks. However, the multi-layer 3-layer network, which was input by the feature extraction results; showed rather high results comparable with convolutional networks; there is no definite advantage in the choice of the method in the subsampling layer. The choice of the subsampling method (max-pooling or average-pooling) for a particular model can be selected experimentally; increasing the training database for this task did not give a tangible improvement in recognition results for convolutional networks and networks with preliminary feature extraction. However, for networks learning without feature extraction, an increase in the size of the database led to a noticeable improvement in performance. Keywords: neural networks, feature extraction, OCR.


2021 ◽  
Vol 336 ◽  
pp. 05013
Author(s):  
Qiming Liang ◽  
Yong Li ◽  
Kaikai Yang ◽  
Xipeng Wang ◽  
Zhi Li

Violent behavior recognition is an important direction of behavior recognition research. For traditional violent behavior recognition algorithms, there is too much background information when processing video information, which will cause greater interference in feature extraction, so the recognition accuracy is not high. Improved on the basis of effective recurrent convolutional network, a long-term recurrent convolutional network with attention mechanism is proposed. In the video preprocessing stage, a variety of attention mechanisms are introduced. In the feature extraction stage, the lightweight end-to-side neural network architecture GhostNet and convLSTM are selected to build a long-term recurrent convolutional network. The global average pooling and fully connected layer are used in the classification process. The combined approach realizes the classification of behaviours. The final results show that in the Hockey dataset, the algorithm in this paper has increased by 0.4% compared to LRCN, in the RWF-2000 dataset with more samples, it has increased by 10.5% compared to LRCN, and has increased by 1.75% compared to I3D, indicating that the algorithm in this paper can effectively suppress the background information. Interference, improve the performance of the algorithm.


2020 ◽  
Author(s):  
Amir Hosein Safari ◽  
Nafiseh Sedaghat ◽  
Alpha Forna ◽  
Hooman Zabeti ◽  
Leonid Chindelevitch ◽  
...  

AbstractDrug resistance in Mycobacterium tuberculosis (MTB) may soon be a leading worldwide cause of death. One way to mitigate the risk of drug resistance is through methods that predict drug resistance in MTB using whole-genome sequencing (WGS) data. Existing machine learning methods for this task featurize the WGS data from a given bacterial isolate by defining one input feature per SNP. Here, we introduce a gene-centric method for predicting drug resistance in TB. We define one feature per gene according to the number of mutations in that gene in a give isolate. This representation greatly decreases the number of model parameters. We further propose a model that considers both gene order through a Long-term Recurrent Convolutional Network (LRCN) architecture, which combines convolutional and recurrent layers. We find that using these strategies yields a substantial, statistically-significant improvement over the state-of-the-art, and that this improvement is driven by the order of genes in the genome and their organization into operons.


Author(s):  
Irina Strelkovskay ◽  
Irina Solovskaya ◽  
Anastasija Makoganjuk ◽  
Nikolaj Severin

The problem of forecasting self-similar traffic, which is characterized by a considerable number of ripples and the property of long-term dependence, is considered. It is proposed to use the method of spline extrapolation using linear and cubic splines. The results of self-similar traffic prediction were obtained, which will allow to predict the necessary size of the buffer devices of the network nodes in order to avoid congestion in the network and exceed the normative values ​​of QoS quality characteristics. The solution of the problem of self-similar traffic forecasting obtained with the Simulink software package in Matlab environment is considered. A method of extrapolation based on spline functions is developed. The proposed method has several advantages over the known methods, first of all, it is sufficient ease of implementation, low resource intensity and accuracy of prediction, which can be enhanced by the use of quadratic or cubic interpolation spline functions. Using the method of spline extrapolation, the results of self-similar traffic prediction were obtained, which will allow to predict the required volume of buffer devices, thereby avoiding network congestion and exceeding the normative values ​​of QoS quality characteristics. Given that self-similar traffic is characterized by the presence of "bursts" and a long-term dependence between the moments of receipt of applications in this study, given predetermined data to improve the prediction accuracy, it is possible to use extrapolation based on wavelet functions, the so-called wavelet-extrapolation method. Based on the results of traffic forecasting, taking into account the maximum values ​​of network node traffic, you can give practical guidance on how traffic is redistributed across the network. This will balance the load of network objects and increase the efficiency of network equipment.


2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


Sign in / Sign up

Export Citation Format

Share Document