scholarly journals Design Scalability Study of the G-Shaped Piezoelectric Harvester Based on Generalized Classical Ritz Method and Optimization

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1887
Author(s):  
Sinwoo Jeong ◽  
Soobum Lee ◽  
Hong-Hee Yoo

This paper studies the design scalability of a -shaped piezoelectric energy harvester (EH) using the generalized classical Ritz method (GCRM) and differential evolution algorithm. The generalized classical Ritz method (GCRM) is the advanced version of the classical Ritz method (CRM) that can handle a multibody system by assembling its equations of motion interconnected by the constraint equations. In this study, the GCRM is extended for analysis of the piezoelectric energy harvesters with material and/or orientation discontinuity between members. The electromechanical equations of motion are derived for the PE harvester using GCRM, and the accuracy of the numerical simulation is experimentally validated by comparing frequency response functions for voltage and power output. Then the GCRM is used in the power maximization design study that considers four different total masses—15 g, 30 g, 45 g, 60 g—to understand design scalability. The optimized EH has the maximum normalized power density of 23.1 × 103 kg·s·m−3 which is the highest among the reviewed PE harvesters. We discuss how the design parameters need to be determined at different harvester scales.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2163 ◽  
Author(s):  
Sanghyun Yoon ◽  
Jinhwan Kim ◽  
Kyung-Ho Cho ◽  
Young-Ho Ko ◽  
Sang-Kwon Lee ◽  
...  

In this study, inertial mass-based piezoelectric energy generators with and without a spring were designed and tested. This energy harvesting system is based on the shock absorber, which is widely used to protect humans or products from mechanical shock. Mechanical shock energies, which were applied to the energy absorber, were converted into electrical energies. To design the energy harvester, an inertial mass was introduced to focus the energy generating position. In addition, a spring was designed and tested to increase the energy generation time by absorbing the mechanical shock energy and releasing a decreased shock energy over a longer time. Both inertial mass and the spring are the key design parameters for energy harvesters as the piezoelectric materials, Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics were employed to store and convert the mechanical force into electric energy. In this research, we will discuss the design and performance of the energy generator system based on shock absorbers.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2770 ◽  
Author(s):  
Iman Izadgoshasb ◽  
Yee Lim ◽  
Ricardo Vasquez Padilla ◽  
Mohammadreza Sedighi ◽  
Jeremy Novak

Harvesting electricity from low frequency vibration sources such as human motions using piezoelectric energy harvesters (PEH) is attracting the attention of many researchers in recent years. The energy harvested can potentially power portable electronic devices as well as some medical devices without the need of an external power source. For this purpose, the piezoelectric patch is often mechanically attached to a cantilever beam, such that the resonance frequency is predominantly governed by the cantilever beam. To increase the power generated from vibration sources with varying frequency, a multiresonant PEH (MRPEH) is often used. In this study, an attempt is made to enhance the performance of MRPEH with the use of a cantilever beam of optimised shape, i.e., a cantilever beam with two triangular branches. The performance is further enhanced through optimising the design of the proposed MRPEH to suit the frequency range of the targeted vibration source. A series of parametric studies were first carried out using finite-element analysis to provide in-depth understanding of the effect of each design parameters on the power output at a low frequency vibration. Selected outcomes were then experimentally verified. An optimised design was finally proposed. The results demonstrate that, with the use of a properly designed MRPEH, broadband energy harvesting is achievable and the efficiency of the PEH system can be significantly increased.


Author(s):  
Michael W. Shafer ◽  
Matthew Bryant ◽  
Ephrahim Garcia

Vibrational energy harvesting has been the subject of significant recent research, and has even begun commercial deployment. Despite the research community’s understanding of the fundamental mechanics of piezoelectric systems under base excitation, proper design methods and guidelines for applied systems are nonexistent. This leaves engineers with the options of either using non-ideal beams, or developing complex heuristic computational design programs. Such options are untenable given the state of research. We seek to answer a relatively simple question: Given mass, frequency, and size requirements, what would be the dimensions of the ideal bimorph harvester? By using approximations for the first natural frequency and mode shape, we are able to determine the unknown beam dimensions and modal parameters in terms of the system requirements and material properties. The result is a power equation that only depends on relative piezoelectric material thickness, and the mechanical damping ratio. With only two dependent variables, the equations can be swept in order to find the ideal beam geometry for any given damping ratio. In addition to presenting this method, two design case studies are provided as examples.


2012 ◽  
Vol 23 (18) ◽  
pp. 2039-2054 ◽  
Author(s):  
Peter L Green ◽  
Keith Worden ◽  
Kais Atallah ◽  
Neil D Sims

Linear energy harvesters can only produce useful amounts of power when excited close to their natural frequency. Due to the uncertain nature of ambient vibrations, it has been hypothesised that such devices will perform poorly in real-world applications. To improve performance, it has been suggested that the introduction of non-linearities into such devices may extend the bandwidth over which they perform effectively. In this study, a magnetic levitation device with non-linearities similar to the Duffing oscillator is considered. The governing equations of the device are formed in which the effects of friction are considered. Analytical solutions are used to explore the effect that friction can have on the system when it is under harmonic excitations. Following this, a numerical model is formed. A differential evolution algorithm is used alongside experimental data to identify the relevant parameters of the device. The model is then validated using experimental data. Monte Carlo simulations are then used to analyse the effect of coulomb damping and Duffing-type non-linearities when the device is subjected to broadband white noise and coloured noise excitations.


2015 ◽  
Vol 2 (4-5) ◽  
pp. 1577-1584 ◽  
Author(s):  
K.Viswanath Allamraju ◽  
Raghavendra Ivani ◽  
Srikanth Korla

Author(s):  
Saeed Onsorynezhad ◽  
Fengxia Wang

Abstract In this study, an impact based frequency up-conversion mechanism is studied using discontinuous dynamics theory. The mechanism consists of a sinusoidal vibrating plastic beam as a driving element and a piezoelectric bimorph as a generator. In order to remove the unfavorable stick motion and enhance the performance of the energy harvester, two pairs of racks and pinion gears and a slider-crank have been added to the system, which makes us able to control the impact occurring time between the driving beam and the generator. In this work, the Rayleigh-Ritz method was applied to obtain the distributed-parameter models of the driving beam and the piezoelectric generator. Both the forward and the backward mechanical-electrical coupling effects were considered during the modeling of the generator. The electrical and mechanical dynamic behaviors of the proposed piezoelectric energy harvester were analytically studied to better understand the effect of system parameters on the performance of piezoelectric energy harvester. Discontinuous dynamics theory was applied to obtain the generated power and voltage. The stability of the periodic solutions was obtained, and the bifurcation diagrams of displacements, impact velocities, generated power, and voltage were obtained analytically as the excitation frequency varying.


Author(s):  
Muhammad Irsyad Suhaimi ◽  
Anis Nurashikin Nordin ◽  
Aliza Aini Md Ralib ◽  
Lai Ming Lim ◽  
Zambri Samsudin

Aims: Recent advancements in sensing technology and wireless communications have accelerated the development of the Internet of Things (IoT) which promote the usage of wearable sensors. An emerging trend is to develop self-sustainable wearable devices, thus eliminating the necessity of the user to carry bulky batteries. In this work, the development of a flexible piezoelectric energy harvester that is capable of harvesting energy from low frequency vibrations is presented. The target application of this energy harvester is for usage in smart shoes. Objectives: The objectives of this research is to design, fabricate and test an energy harvester on PET substrate using Aluminum Zinc Oxide as its piezoelectric layer. Methods: The energy harvester was designed as a cantilever structure using PET/AZO/Ag layers in d33 mode which can generate large output voltages with small displacements. The electrodes were designed as an interdigitated structure in which two significant design parameters were chosen, namely the effect of gap between electrodes, g and number of interdigital electrodes (IDE) pairs, N to the output voltage and resonant frequency. Results: The sputtered AZO on PET showed c-axis orientation at 002 peak with 2 values of 34.45° which indicates piezoelectric behaviour. The silver IDE pairs were screen-printed on the AZO thin film. Functionality of the device as an energy harvester was demonstrated by testing it using a shaker. The energy harvester was capable of generating 0.867 Vrms output voltage when actuated at 49.6 Hz vibrations. Conclusion: This indicates that the AZO thin films with printed silver electrodes can be used as flexible, d33 energy harvesters.


2018 ◽  
Vol 232 ◽  
pp. 04066
Author(s):  
Yuting Liu ◽  
Jiahao Deng ◽  
Yong Ye ◽  
Zhuo Hou ◽  
Zuodong Duan ◽  
...  

Piezoelectric materials are widely used to form piezoelectric energy harvesters. Also, the thermoelastic dissipation always influences the energy harvesting efficiency, during the energy harvest process. Therefore, in this paper, we discuss the effect of thermoelastic dissipation on the piezoelectric harvester through numerical calculation, simulation and experiment. The piezoelectric thermoelastic coupling governing equations under different vibration are derived, which are based on the Euler-Bernoulli beam theory, thermal conduction model and piezoelectric field model. Then, the structure frequency shift and thermoelastic damping are studied via numerical calculation and simulation. Meanwhile, we show the influence of the temperature field on the piezoelectric structure under different vibration modes. Furth more, we research the variations of piezoelectric structure thermoelastic dissipation characteristics under different structure geometry sizes. Based on these analyses, the effect of piezoelectric thermoelastic dissipation on the piezoelectric harvester is researched


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
A. Aladwani ◽  
M. Arafa ◽  
O. Aldraihem ◽  
A. Baz

Conventional energy harvester typically consists of a cantilevered composite piezoelectric beam which has a proof mass at its free end while its fixed end is mounted on a vibrating base structure. The resulting relative motion between the proof mass and the base structure produces a mechanical strain in the piezoelectric elements which is converted into electrical power by virtue of the direct piezoelectric effect. In this paper, the harvester is provided with a dynamic magnifier consisting of a spring-mass system which is placed between the fixed end of the piezoelectric beam and the vibrating base structure. The main function of the dynamic magnifier, as the name implies, is to magnify the strain experienced by the piezoelectric elements in order to amplify the electrical power output of the harvester. With proper selection of the design parameters of the magnifier, the harvested power can be significantly enhanced and the effective bandwidth of the harvester can be improved. The theory governing the operation of this class of cantilevered piezoelectric energy harvesters with dynamic magnifier (CPEHDM) is developed using the finite element method. Numerical examples are presented to illustrate the merits of the CPEHDM in comparison with the conventional piezoelectric energy harvesters (CPEH). The obtained results demonstrate the feasibility of the CPEHDM as a simple and effective means for enhancing the magnitude and spectral characteristics of CPEH.


Sign in / Sign up

Export Citation Format

Share Document