scholarly journals A 9-Bit 1-GS/s Hybrid-Domain Pseudo-Pipelined SAR ADC Based on Variable Gain VTC and Segmented TDC

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2650
Author(s):  
Suping Bai ◽  
Zhi Wan ◽  
Peiyuan Wan ◽  
Hongda Zhang ◽  
Yongkuo Ma ◽  
...  

This paper presents a 9-bit 1 GS/s successive approximation register (SAR) analog-to-digital converter (ADC). In this hybrid architecture, the pseudo-pipeline operation is realized, which increases the sampling rate effectively. The ADC adopts two key technologies: the variable gain voltage-to-time converter (VTC), which ensures the linearity is not sacrificed; the segmented time-to-digital converter (STDC), which further improves the linearity of time domain quantization. The prototype ADC is simulated in a standard 65-nm CMOS process with an active area of 0.038 mm2. The simulated SNDR and SFDR are 44.3 and 58 dB with a sampling rate of 1 GS/s. The FoMW and FoMS are 24.7 fJ/conv-step and 150.7 dB, respectively.

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 165
Author(s):  
Shouping Li ◽  
Yang Guo ◽  
Jianjun Chen ◽  
Bin Liang

This paper presents a foreground digital calibration algorithm based on a dynamic comparator that aims to reduce comparator offset and capacitor mismatch, as well as improve the performance of the successive approximation analog-to-digital converter (SARADC). The dynamic comparator is designed with two preamplifiers and one latch to facilitate high speed, high precision, and low noise. The foreground digital calibration algorithm provides high speed with minimal area consumption. This design is implemented on a 12-bit 30 MS/s SARADC with a standard 0.13 μm Complementary Metal Oxide Semiconductor (CMOS) process. The simulation Nyquist 68.56 dB signal-to-noise-and-distortion ratio (SNDR) and 84.45 dBc spurious free dynamic range (SFDR) at 30 MS/s, differential nonlinearity (DNL) and integral nonlinearity (INL) are within 0.64 Least Significant Bits (LSB) and 1.3 LSB, respectively. The ADC achieves an effective number of bits (ENOB) of 11.08 and a figure-of-merit (FoM) of 39.45 fJ/conv.-step.


2014 ◽  
Vol 23 (05) ◽  
pp. 1450057
Author(s):  
SAHAR SARAFI ◽  
KHEYROLLAH HADIDI ◽  
EBRAHIM ABBASPOUR ◽  
ABU KHARI BIN AAIN ◽  
JAVAD ABBASZADEH

This paper presents an analog-to-digital converter (ADC), using pipelined successive approximation register (SAR) architecture. The structure which is a combination of SAR-ADC and pipelined ADC benefits from each of their advantages. A new synchronization method is proposed to improve the pipelined SAR-ADC's speed. The proposed method reduces the total conversion without limiting the ADC performance. To evaluate the proposed method a 10-bit 100 MS/s is designed in 0.5 μm CMOS process technology. According to the obtained simulation results, the designed ADC digitizes a 9-MHz input with 54.19 dB SNDR while consuming 57.3 mw from a 5-V supply.


The design objective is to implement a Low power, High speed and High resolution Flash ADC with increased sampling rate. To make this possible the blocks of ADC are analyzed. The resistive ladder, comparator block, encoder block are the major modules of flash ADC. Firstly, the comparator block is designed so that it consumes low power. A NMOS latch based, PMOS LATCH based and a Strong ARM Latch based comparators were designed separately. A comparative analysis is made with the comparator designs. Comparators in the design is reduced to half by using time domain interpolation. Then a reference subtraction block is designed to generate the subtraction value of voltages easily and its given as input to comparator. Then a more efficient and low power consuming fat tree encoder is designed. Once all the blocks were ready, a 8 bit Flash Analog to Digital Converter was designed using 90nm CMOS technology and all the parameters such as sampling rate, power consumption, resolution were obtained and compared with other works.


2007 ◽  
Vol 16 (01) ◽  
pp. 1-14
Author(s):  
TASKIN KOCAK ◽  
GEORGE R. HARRIS ◽  
RONALD F. DEMARA

In this paper, a novel architecture for self-timed analog-to-digital conversion is presented and designed using the NULL Convention Logic (NCL) paradigm. This analog-to-digital converter (ADC) employs successive approximation and a one-hot encoded masking technique to digitize analog signals. The architecture scales readily to any given resolution by utilizing the one-hot encoded scheme to permit identical logical components for each bit of resolution. The four-bit configuration of the proposed design has been implemented and assessed via simulation in 0.18-μm CMOS technology. Furthermore, the ADC may be interfaced with either synchronous or four-phase asynchronous digital systems.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000245-000252 ◽  
Author(s):  
Bruce W. Ohme ◽  
Mark R. Larson

Initial test results have been previously reported for a high-temperature (225°C) 12-bit analog-to-digital converter (HTADC12) fabricated using a production high-temperature silicon-on-insulator (SOI) CMOS process and assembled in hermetically sealed ceramic packages (ref. 1). Reliability test results for the HTADC12 are presented including parametric and functional test results from 1500 hours of dynamic life test at 250°C as well 1000 temperature cycles from −65°C to 200°C. Results of post-stress wirebond, and die bond testing are also provided.


Sign in / Sign up

Export Citation Format

Share Document