scholarly journals A Hybrid Methodology Based on Smart Management Energy Consumption in Irrigation Systems

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2864
Author(s):  
Florina Scarlatache ◽  
Gheorghe Grigoras ◽  
Vlad-Andrei Scarlatache ◽  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov

Innovative practices in irrigation systems can bring improvements in terms of economic efficiency and, at the same time, can reduce environmental impacts. Investment in high-tech technologies frequently involves additional costs, but an efficient water management system can increase the lifetime of the equipment. The most utilized electronic device for a smart management, used to pump units from irrigation systems, is the frequency converter. This device can regulate the speed of the motors that control the pumps according to the consumption of water, ensuring that it does not pump more water than is needed. This paper develops a new operating algorithm that ensures the operation of the pumping group at safe operating intervals and identifies the equivalent pump operating points for the entire flow range and pumping height of the pumping group in order to bring smart management to irrigation systems. The parameters monitored and collected for each vertical pump refers to the voltage, current, frequency (speeds) and flow of each hydraulic operating mode. The methodology used is based on the principle of creating an expert system to optimize energy consumption in the pumping groups. The proposed methodology was tested on an irrigation system that includes a pumping group with five pumps, showing its effectiveness in obtaining the optimal solution with a relatively low computational burden and without the violation of any system constraints under any operating conditions.

Author(s):  
Florina Scarlatache ◽  
Gheorghe Grigoras ◽  
Vlad-Andrei Scarlatache ◽  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov

Innovative practices in irrigation systems can bring improvements in terms of economic efficiency and in the same time can reduce environmental impact. Investment in high tech technologies frequently involves additional costs, but an efficient water management can increase the lifetime of the equipment. The main objective of this article is to reduce the energy consumption by one thousand cubic meters pumped and automatically to increase the economic efficiency of the pumping groups. This paper develops a new operating algorithm that ensures the operation of the pumping group at safe operating intervals and in the same time identifies the equivalent pump operating points for the entire flow range and pumping height of the pumping group. This methodology is based on the principles of an Expert System to perform the optimization process of the energy consumption in pumping groups. The resulting methodology avoids the combinatorial explosion of the solutions to be analyzed and determines the point of maximum efficiency without violation of any of the system constraints under any operating condition. The proposed methodology is tested on an irrigation system that includes a pumping group with 5 pumps, showing its effectiveness in obtaining the optimal solution with a relatively low computational burden.


Proceedings ◽  
2020 ◽  
Vol 42 (1) ◽  
pp. 62 ◽  
Author(s):  
Paula Fraga-Lamas ◽  
Mikel Celaya-Echarri ◽  
Leyre Azpilicueta ◽  
Peio Lopez-Iturri ◽  
Francisco Falcone ◽  
...  

In some parts of the world, climate change has led to periods of drought that require managing efficiently the scarce water and energy resources. This paper proposes an IoT smart irrigation system specifically designed for urban areas where remote IoT devices have no direct access to the Internet or to the electrical grid, and where wireless communications are difficult due to the existence of long distances and multiple obstacles. To tackle such issues, this paper proposes a LoRaWAN-based architecture that provides long distance and communications with reduced power consumption. Specifically, the proposed system consists of IoT nodes that collect sensor data and send them to local fog computing nodes or to a remote cloud, which determine an irrigation schedule that considers factors such as the weather forecast or the moist detected by nearby nodes. It is essential to deploy the IoT nodes in locations within the provided coverage range and that guarantee good speed rates and reduced energy consumption. Due to this reason, this paper describes the use of an in-house 3D-ray launching radio-planning tool to determine the best locations for IoT nodes on a real medium-scale scenario (a university campus) that was modeled with precision, including obstacles such as buildings, vegetation, or vehicles. The obtained simulation results were compared with empirical measurements to assess the operating conditions and the radio planning tool accuracy. Thus, it is possible to optimize the wireless network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.


Author(s):  
O. Mitrofanov ◽  
◽  
V. Sidorenko ◽  
S. Sidorenko

Introduction. Circular-action sprinklers, as shown by the practice of their long-term operation and previous studies, have significant advantages over front-end machines: maintenance is minimized, the ability to fully automate irrigation processes and network power supply, a one-hydrant water supply system, etc. At the same time, pivot irrigation leaves the corner sections of the field without irrigation, which account for up to 20% of its area - and this is a significant drawback of pivot irrigation machines. Foreign manufacturers of irrigation machines produce and sell additional swivel fenders for pivots that irrigate the corners of the field. They are also called "corner irrigation systems". Since 2018, such systems began to appear in Ukraine. Specialists of the South-Ukrainian branch of L. Pogorilyy UkrNDIPVT investigated the corner irrigation system of the company "Valley" by testing in the conditions of economic operation. Research goal. Determination of parameters and characteristics of the corner irrigation system "V-Flex Corner Valley", assessment of its effectiveness and prospects for widespread implementation. Research methods. Theoretical research was carried out by analyzing the studied information resources. Laboratory and field studies were carried out by testing the irrigation system under operating conditions. System parameters and characteristics were determined according to standardized methods. Results. The design features and principles of the irrigation system functioning have been investigated and described. The tests determined the main operational characteristics of the irrigation system in comparison with the characteristics of the pivot sprinkler (using materials from previous studies). The economic indicators of the irrigation system and the circular machine are determined in comparison. The factors of increasing/decreasing efficiency and their quantitative indicators have been investigated. The analysis of the results obtained and the reasons that hinder the widespread introduction of corner irrigation systems into the practice of irrigated agriculture in Ukraine are identified. Сonclusions. Tests and studies of the pivot sprinkler with corner irrigation system have proven the functional excellence and high operational reliability of the irrigation system. The use of a corner irrigation system made it possible to increase the irrigated area by 21.86 % without changing the basic infrastructure and borders of the irrigated field. Implementing a corner irrigation system requires significant capital investment: the cost of a corner wing, which irrigates 21.86 % of the field, is 79 % of the cost of a basic pivot, which irrigates 59.72 % of the field.. The increase in gross income due to an increase in the irrigated area provides a basis for predicting the return on investment when growing highly profitable crops.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1675
Author(s):  
Hussein Al-Ghobari ◽  
Ahmed Z. Dewidar

The center pivot irrigation system is a type of irrigation technology used to apply water effectively and uniformly over a wide variety of areas and topographies. These irrigation systems’ uniformity of water application greatly affects water use, energy consumption, and crop production. Performance tests of the standard lateral galvanized and modified polyethylene plastic pipes in the center pivot irrigation systems were conducted in different regions of Saudi Arabia. Water distribution depths along the laterals, coefficient of uniformity (CU), and distribution uniformity of the low quarter (DU) were determined. The results revealed that profiles of water distribution ranged from 4 to 14 mm for the standard-center pivot irrigation systems, while those for the modified-center pivot irrigation systems ranged from 6.5 to 50 mm. Standard-center pivot irrigation systems’ CU values ranged from 74 to 90%, with an average of 86%. In comparison, the modified-center pivot irrigation systems’ CU values ranged from 62 to 83%, with an average of 78%. The DU values ranged from 60 to 82% for the standard-center pivot irrigation systems, with an overall average of 77%. For the modified-center pivot irrigation systems, the DU values, in contrast, ranged from 31 to 75%, with an average of 65%. Thus, the accuracy and uniformity of the standard-center pivot irrigation systems are superior to those that have been modified. Additionally, a statistical model was developed to investigate the relationship between the water losses and the main climatic factors under field operating conditions. Therefore, the study results are expected to draw attention to standard lateral pipes’ value on the one hand and demonstrate the detrimental consequences of growers’ incorrect practices in pivot irrigation systems, motivating them to take strong action against these activities, on the other hand.


2020 ◽  
Vol 6 (2) ◽  
pp. 50-58
Author(s):  
Matluba Muxammadiyeva ◽  
◽  
Iftixor Ergashev

If we look at the existing irrigation methods used today in the country, then they are divided into: ground, rainfall, underground or underground, drip and spray. Basically, they are transferred to the irrigation field in two forms: through gravity and pressure irrigation systems. Naturally, a gravity irrigation system is economically more expensive than a low pressure irrigation system. However, from a performance appraisal stand point, pressure irrigation methods are less efficient and have serious disadvantages


2020 ◽  
Vol 5 (1) ◽  
pp. 563-572
Author(s):  
Iman Golpour ◽  
Mohammad Kaveh ◽  
Reza Amiri Chayjan ◽  
Raquel P. F. Guiné

AbstractThis research work focused on the evaluation of energy and exergy in the convective drying of potato slices. Experiments were conducted at four air temperatures (40, 50, 60 and 70°C) and three air velocities (0.5, 1.0 and 1.5 m/s) in a convective dryer, with circulating heated air. Freshly harvested potatoes with initial moisture content (MC) of 79.9% wet basis were used in this research. The influence of temperature and air velocity was investigated in terms of energy and exergy (energy utilization [EU], energy utilization ratio [EUR], exergy losses and exergy efficiency). The calculations for energy and exergy were based on the first and second laws of thermodynamics. Results indicated that EU, EUR and exergy losses decreased along drying time, while exergy efficiency increased. The specific energy consumption (SEC) varied from 1.94 × 105 to 3.14 × 105 kJ/kg. The exergy loss varied in the range of 0.006 to 0.036 kJ/s and the maximum exergy efficiency obtained was 85.85% at 70°C and 0.5 m/s, while minimum exergy efficiency was 57.07% at 40°C and 1.5 m/s. Moreover, the values of exergetic improvement potential (IP) rate changed between 0.0016 and 0.0046 kJ/s and the highest value occurred for drying at 70°C and 1.5 m/s, whereas the lowest value was for 70°C and 0.5 m/s. As a result, this knowledge will allow the optimization of convective dryers, when operating for the drying of this food product or others, as well as choosing the most appropriate operating conditions that cause the reduction of energy consumption, irreversibilities and losses in the industrial convective drying processes.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3966
Author(s):  
Jarosław Mamala ◽  
Michał Śmieja ◽  
Krzysztof Prażnowski

The market demand for vehicles with reduced energy consumption, as well as increasingly stringent standards limiting CO2 emissions, are the focus of a large number of research works undertaken in the analysis of the energy consumption of cars in real operating conditions. Taking into account the growing share of hybrid drive units on the automotive market, the aim of the article is to analyse the total unit energy consumption of a car operating in real road conditions, equipped with an advanced hybrid drive system of the PHEV (plug-in hybrid electric vehicles) type. In this paper, special attention has been paid to the total unit energy consumption of a car resulting from the cooperation of the two independent power units, internal combustion and electric. The results obtained for the individual drive units were presented in the form of a new unit index of the car, which allows us to compare the consumption of energy obtained from fuel with the use of electricity supported from the car’s batteries, during journeys in real road conditions. The presented research results indicate a several-fold increase in the total unit energy consumption of a car powered by an internal combustion engine compared to an electric car. The values of the total unit energy consumption of the car in real road conditions for the internal combustion drive are within the range 1.25–2.95 (J/(kg · m)) in relation to the electric drive 0.27–1.1 (J/(kg · m)) in terms of instantaneous values. In terms of average values, the appropriate values for only the combustion engine are 1.54 (J/(kg · m)) and for the electric drive only are 0.45 (J/(kg · m)) which results in the internal combustion engine values being 3.4 times higher than the electric values. It is the combustion of fuel that causes the greatest increase in energy supplied from the drive unit to the car’s propulsion system in the TTW (tank to wheels) system. At the same time this component is responsible for energy losses and CO2 emissions to the environment. The results were analysed to identify the differences between the actual life cycle energy consumption of the hybrid powertrain and the WLTP (Worldwide Harmonized Light-Duty Test Procedure) homologation cycle.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 554
Author(s):  
Suresh Kallam ◽  
Rizwan Patan ◽  
Tathapudi V. Ramana ◽  
Amir H. Gandomi

Data are presently being produced at an increased speed in different formats, which complicates the design, processing, and evaluation of the data. The MapReduce algorithm is a distributed file system that is used for big data parallel processing. Current implementations of MapReduce assist in data locality along with robustness. In this study, a linear weighted regression and energy-aware greedy scheduling (LWR-EGS) method were combined to handle big data. The LWR-EGS method initially selects tasks for an assignment and then selects the best available machine to identify an optimal solution. With this objective, first, the problem was modeled as an integer linear weighted regression program to choose tasks for the assignment. Then, the best available machines were selected to find the optimal solution. In this manner, the optimization of resources is said to have taken place. Then, an energy efficiency-aware greedy scheduling algorithm was presented to select a position for each task to minimize the total energy consumption of the MapReduce job for big data applications in heterogeneous environments without a significant performance loss. To evaluate the performance, the LWR-EGS method was compared with two related approaches via MapReduce. The experimental results showed that the LWR-EGS method effectively reduced the total energy consumption without producing large scheduling overheads. Moreover, the method also reduced the execution time when compared to state-of-the-art methods. The LWR-EGS method reduced the energy consumption, average processing time, and scheduling overhead by 16%, 20%, and 22%, respectively, compared to existing methods.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Lhassane Idoumghar ◽  
Mahmoud Melkemi ◽  
René Schott ◽  
Maha Idrissi Aouad

The paper presents a novel hybrid evolutionary algorithm that combines Particle Swarm Optimization (PSO) and Simulated Annealing (SA) algorithms. When a local optimal solution is reached with PSO, all particles gather around it, and escaping from this local optima becomes difficult. To avoid premature convergence of PSO, we present a new hybrid evolutionary algorithm, called HPSO-SA, based on the idea that PSO ensures fast convergence, while SA brings the search out of local optima because of its strong local-search ability. The proposed HPSO-SA algorithm is validated on ten standard benchmark multimodal functions for which we obtained significant improvements. The results are compared with these obtained by existing hybrid PSO-SA algorithms. In this paper, we provide also two versions of HPSO-SA (sequential and distributed) for minimizing the energy consumption in embedded systems memories. The two versions, of HPSO-SA, reduce the energy consumption in memories from 76% up to 98% as compared to Tabu Search (TS). Moreover, the distributed version of HPSO-SA provides execution time saving of about 73% up to 84% on a cluster of 4 PCs.


Sign in / Sign up

Export Citation Format

Share Document