scholarly journals Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2878
Author(s):  
Malinka Ivanova ◽  
Petya Petkova ◽  
Nikolay Petkov

The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems.

2012 ◽  
pp. 1056-1068
Author(s):  
Laurent Donzé ◽  
Andreas Meier

Marketing deals with identifying and meeting the needs of customers. It is therefore both an art and a science. To bridge the gap between art and science, soft computing, or computing with words, could be an option. This chapter introduces fundamental concepts such as fuzzy sets, fuzzy logic, and computing with linguistic variables and terms. This set of fuzzy methods can be applied in marketing and customer relationship management. In the conclusion, future research directions are given for applying fuzzy logic to marketing and customer relationship management.


Author(s):  
Nourhan Mohamed Zayed ◽  
Heba A. Elnemr

Deep learning (DL) is a special type of machine learning that attains great potency and flexibility by learning to represent input raw data as a nested hierarchy of essences and representations. DL consists of more layers than conventional machine learning that permit higher levels of abstractions and improved prediction from data. More abstract representations computed in terms of less abstract ones. The goal of this chapter is to present an intensive survey of existing literature on DL techniques over the last years especially in the medical imaging analysis field. All these techniques and algorithms have their points of interest and constraints. Thus, analysis of various techniques and transformations, submitted prior in writing, for plan and utilization of DL methods from medical image analysis prospective will be discussed. The authors provide future research directions in DL area and set trends and identify challenges in the medical imaging field. Furthermore, as quantity of medicinal application demands increase, an extended study and investigation in DL area becomes very significant.


Author(s):  
Amal Kilani ◽  
Ahmed Ben Hamida ◽  
Habib Hamam

In this chapter, the authors present a profound literature review of artificial intelligence (AI). After defining it, they briefly cover its history and enumerate its principal fields of application. They name, for example, information system, commerce, image processing, human-computer interaction, data compression, robotics, route planning, etc. Moreover, the test that defines an artificially intelligent system, called the Turing test, is also defined and detailed. Afterwards, the authors describe some AI tools such as fuzzy logic, genetic algorithms, and swarm intelligence. Special attention will be given to neural networks and fuzzy logic. The authors also present the future research directions and ethics.


Author(s):  
Mercedes Barrachina ◽  
Laura Valenzuela López

Sleep disorders are related to many different diseases, and they could have a significant impact in patients' health, causing an economic impact to the society and to the national health systems. In the United States, according to information from the Center for Disease Control and Prevention, those disorders are affecting 50-70 million in the adult population. Sleep disorders are causing annually around 40,000 deaths due to cardiovascular problems, and they cost the health system more than 16 billion. In other countries, such as in Spain, those disorders affect up to 48% of the adult population. The main objective of this chapter is to review and evaluate the different machine learning techniques utilized by researchers and medical professionals to identify, assess, and characterize sleep disorders. Moreover, some future research directions are proposed considering the evaluated area.


2018 ◽  
Vol 2 (3) ◽  
pp. 228-267 ◽  
Author(s):  
Zaidi ◽  
Chandola ◽  
Allen ◽  
Sanyal ◽  
Stewart ◽  
...  

Modeling the interactions of water and energy systems is important to the enforcement of infrastructure security and system sustainability. To this end, recent technological advancement has allowed the production of large volumes of data associated with functioning of these sectors. We are beginning to see that statistical and machine learning techniques can help elucidate characteristic patterns across these systems from water availability, transport, and use to energy generation, fuel supply, and customer demand, and in the interdependencies among these systems that can leave these systems vulnerable to cascading impacts from single disruptions. In this paper, we discuss ways in which data and machine learning can be applied to the challenges facing the energy-water nexus along with the potential issues associated with the machine learning techniques themselves. We then survey machine learning techniques that have found application to date in energy-water nexus problems. We conclude by outlining future research directions and opportunities for collaboration among the energy-water nexus and machine learning communities that can lead to mutual synergistic advantage.


Author(s):  
Leonid Perlovsky ◽  
Gary Kuvich

Mind is based on intelligent cognitive processes, which are not limited by language and logic only. The thought is a set of informational processes in the brain, and such processes have the same rationale as any other systematic informational processes. Their specifics are determined by the ways of how brain stores, structures, and process this information. Systematic approach allows representing them in a diagrammatic form that can be formalized. Semiotic approach allows for the universal representation of such diagrams. In that approach, logic is a way of synthesis of such structures, which is a small but clearly visible top of the iceberg. The most efforts were traditionally put into logics without paying much attention to the rest of the mechanisms that make the entire thought system working autonomously. Dynamic fuzzy logic is reviewed and its connections with semiotics are established. Dynamic fuzzy logic extends fuzzy logic in the direction of logic-processes, which include processes of fuzzification and defuzzification as parts of logic. The paper reviews basic cognitive mechanisms, including instinctual drives, emotional and conceptual mechanisms, perception, cognition, language, a model of interaction between language and cognition upon the new semiotic models. The model of interacting cognition and language is organized in an approximate hierarchy of mental representations from sensory percepts at the “bottom” to objects, contexts, situations, abstract concepts-representations, and to the most general representations at the “top” of mental hierarchy. Knowledge Instinct and emotions are driving feedbacks for these representations. Interactions of bottom-up and top-down processes in such hierarchical semiotic representation are essential for modeling cognition. Dynamic fuzzy logic is analyzed as a fundamental mechanism of these processes. Future research directions are discussed.


2021 ◽  
Vol 13 (18) ◽  
pp. 10048
Author(s):  
Benjamin Gidron ◽  
Yael Israel-Cohen ◽  
Kfir Bar ◽  
Dalia Silberstein ◽  
Michael Lustig ◽  
...  

The Impact Tech Startup (ITS) is a new, rapidly developing type of organizational category. Based on an entrepreneurial approach and technological foundations, ITSs adopt innovative strategies to tackle a variety of social and environmental challenges within a for-profit framework and are usually backed by private investment. This new organizational category is thus far not discussed in the academic literature. The paper first provides a conceptual framework for studying this organizational category, as a combination of aspects of social enterprises and startup businesses. It then proposes a machine learning (ML)-based algorithm to identify ITSs within startup databases. The UN’s Sustainable Development Goals (SDGs) are used as a referential framework for characterizing ITSs, with indicators relating to those 17 goals that qualify a startup for inclusion in the impact category. The paper concludes by discussing future research directions in studying ITSs as a distinct organizational category through the usage of the ML methodology.


2021 ◽  
Vol 11 (6) ◽  
pp. 7824-7835
Author(s):  
H. Alalawi ◽  
M. Alsuwat ◽  
H. Alhakami

The importance of classification algorithms has increased in recent years. Classification is a branch of supervised learning with the goal of predicting class labels categorical of new cases. Additionally, with Coronavirus (COVID-19) propagation since 2019, the world still faces a great challenge in defeating COVID-19 even with modern methods and technologies. This paper gives an overview of classification algorithms to provide the readers with an understanding of the concept of the state-of-the-art classification algorithms and their applications used in the COVID-19 diagnosis and detection. It also describes some of the research published on classification algorithms, the existing gaps in the research, and future research directions. This article encourages both academics and machine learning learners to further strengthen the basis of classification methods.


Author(s):  
Ziwei Zhang ◽  
Xin Wang ◽  
Wenwu Zhu

Machine learning on graphs has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To solve this critical challenge, automated machine learning (AutoML) on graphs which combines the strength of graph machine learning and AutoML together, is gaining attention from the research community. Therefore, we comprehensively survey AutoML on graphs in this paper, primarily focusing on hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We further overview libraries related to automated graph machine learning and in-depth discuss AutoGL, the first dedicated open-source library for AutoML on graphs. In the end, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive review of automated machine learning on graphs to the best of our knowledge.


Sign in / Sign up

Export Citation Format

Share Document