scholarly journals High-Performance InGaAs HEMTs on Si Substrates for RF Applications

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 259
Author(s):  
Bo Wang ◽  
Yanfu Wang ◽  
Ruize Feng ◽  
Haomiao Wei ◽  
Shurui Cao ◽  
...  

In this paper, we have fabricated InGaAs high-electron-mobility transistors (HEMTs) on Si substrates. The InAlAs/InGaAs heterostructures were initially grown on InP substrates by molecular beam epitaxy (MBE), and the adhesive wafer bonding technique was employed to bond the InP substrates to Si substrates, thereby forming high-quality InGaAs channel on Si. The 120 nm gate length device shows a maximum drain current (ID,max) of 569 mA/mm, and the maximum extrinsic transconductance (gm,max) of 1112 mS/mm. The current gain cutoff frequency (fT) is as high as 273 GHz and the maximum oscillation frequency (fMAX) reaches 290 GHz. To the best of our knowledge, the gm,max and the fT of our device are the highest ever reported in InGaAs channel HEMTs on Si substrates at given gate length above 100 nm.

2016 ◽  
Vol 858 ◽  
pp. 1174-1177 ◽  
Author(s):  
Wael Jatal ◽  
Uwe Baumann ◽  
Heiko O. Jacobs ◽  
Frank Schwierz ◽  
Jörg Pezoldt

A nanochannel array structure was applied to realize enhancement-mode high electron mobility transistors based on AlGaN/AlN/GaN-heterostructures grown on Si substrates using a SiC transition layer. The fabricated nanochannel array HEMT, consisting of 78 channels connected in parallel with a channel width of 100 nm defined by electron-beam lithography and dry etching, shows a threshold voltage of 0.35 V. The high electron mobility transistors with LG= 0.2 μm had a maximum drain current density of 445 mA/mm and a peak extrinsic tranconductance of 235 mS/mm. A unity current gain cut-off frequency of 30 GHz and maximum oscillation frequency of 40 GHz were measured on these devices.


Author(s):  
В.А. Беляков ◽  
И.В. Макарцев ◽  
А.Г. Фефелов ◽  
С.В. Оболенский ◽  
А.П. Васильев ◽  
...  

High electron mobility transistors (HEMTs) have been developed based on InAlAs/InGaAs heterostructures on an InP substrate, with a transconductance of about 1000 mS/mm, a reverse breakdown voltage of more than 10 V and a unity-gain cutoff frequency is 140 GHz. In addition, HEMT transistors based on AlGaAs/InGaAs/GaAs heterostructures on a GaAs substrate with double gate recessing technology have been developed. This transistors demonstrate a maximum measured transconductance of the current-voltage characteristic of 520 mS/mm, a maximum drain current of 670 mA/mm, and a gate-drain breakdown voltage of 14 V and a unity-gain cut-off frequency is 120 GHz. Due to the increased breakdown voltage, the developed transistors have been used in monolithic integrated circuits of millimeter-wave power amplifiers with an output power of more than 110 mW.


2012 ◽  
Vol 229-231 ◽  
pp. 2007-2009 ◽  
Author(s):  
Zhi Ming Wang ◽  
Jin Chao Mou ◽  
Wei Hua Yu ◽  
Xin Lv

In this study, performances of double delta-doped AlGaAs/InGaAspseudomorphic high electron mobility transistors are investigated. Simulation results demonstrate good performance for this structure. Form simulation, the structure demonstrates a maximum current gain cutoff frequency of 145GHz for 100nm gate length, a peak extrinsic transconductance of 526mS/mm, and a maximum saturation current density of 350mA/mm.


2002 ◽  
Vol 720 ◽  
Author(s):  
W. S. Sul ◽  
D. H. Shin ◽  
J. K. Rhee

AbstractIn this paper, we have studied on the fabrication of GaAs-based pseudomorphic high electron mobility transistors (PHEMT's) for the purpose of millimeter-wave applications. To fabricate the high performance GaAs-based PHEMT's, we have developed unit processes, such as 0.1 μm Γ-gate lithography, silicon nitride passivation, and air-bridge process to achieve high performance of device characteristics. The DC characteristics of the fabricated PHEMT was measured at a unit gate width of 70 μm and 2 gate fingers, and showed a good pinch-off property (VP = -1 V) and a drain-source saturation current density (Idss) of 373.53 mA/mm. Maximum extrinsic transconductance (gm) was 522.4 mS/mm at Vgs = -0.3 V, Vds = 1.5 V, and Ids = 0.5 Idss. The RF measurements were performed in the frequency range of 1.0 ∼ 50 GHz. For this measurement, the drain and gate voltage were 1.5 V and -0.3 V, respectively. At 50 GHz, 9.2 dB of maximum stable gain (MSG) and 4.2 dB of S21 gain were obtained, respectively. A current gain cut-off frequency (fT) of 113 GHz and a maximum frequency of oscillation (fmax) of 180 GHz were achieved from the fabricated PHEMT with a 0.1 μm gate length.


2011 ◽  
Vol 1324 ◽  
Author(s):  
Takuma Nanjo ◽  
Misaichi Takeuchi ◽  
Akifumi Imai ◽  
Yousuke Suzuki ◽  
Muneyoshi Suita ◽  
...  

ABSTRACTA channel layer substitution of a wider bandgap AlGaN for a conventional GaN in high electron mobility transistors (HEMTs) is an effective method of enhancing the breakdown voltage. Wider bandgap AlGaN, however, should also increase the ohmic contact resistance. Si ion implantation doping technique was utilized to achieve sufficiently low resistive source/drain contacts. The fabricated AlGaN channel HEMTs with the field plate structure demonstrated good pinch-off operation with sufficiently high drain current density of 0.5 A/mm without noticeable current collapse. The obtained maximum breakdown voltages was 1700 V in the AlGaN channel HEMT with the gate-drain distance of 10 μm. These remarkable results indicate that AlGaN channel HEMTs could become future strong candidates for not only high-frequency devices such as low noise amplifiers but also high-power devices such as switching applications.


Sign in / Sign up

Export Citation Format

Share Document