scholarly journals TSV Technology and High-Energy Heavy Ions Radiation Impact Review

Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 112 ◽  
Author(s):  
Wenchao Tian ◽  
Tianran Ma ◽  
Xiaohan Liu

Three-dimensional integrated circuits (3D IC) based on TSV (Through Silicon Via) technology is the latest packaging technology with the smallest size and quality. As a result, it can effectively reduce parasitic effects, improve work efficiency, reduce the power consumption of the chip, and so on. TSV-based silicon interposers have been applied in the ground environment. In order to meet the miniaturization, high performance and low-cost requirements of aerospace equipment, the adapter substrate is a better choice. However, the transfer substrate, as an important part of 3D integrated circuits, may accumulate charge due to heavy ion irradiation and further reduce the performance of the entire chip package in harsh space radiation environment or cause it to fail completely. Little research has been carried out until now. This article summarizes the research methods and conclusions of the research on silicon interposers and TSV technology in recent years, as well as the influence of high-energy heavy ions on semiconductor devices. Based on this, a series of research methods to study the effect of high-energy heavy ions on TSV and silicon adapter plates is proposed.

2003 ◽  
Vol 797 ◽  
Author(s):  
Koichi Awazu ◽  
Makoto Fujimaki ◽  
Yoshimichi Ohki ◽  
Tetsuro Komatsubara

ABSTRACTWe have developed a nano-micro structure fabrication method in rutile TiO2 single crystal by use of swift heavy-ion irradiation. The area where ions heavier than Cl ion accelerated with MeV-order high energy were irradiated was well etched by hydrofluoric acid, by comparison etching was not observed in the pristine TiO2 single crystal. Noticed that the irradiated area could be etched to a depth at which the electronic stopping power of the ion decayed to a value of 6.2keV/nm. We also found that the value of the electronic stopping power was increased, eventually decreased against depth in TiO2 single crystal with, e.g. 84.5MeV Ca ion. Using such a beam, inside of TiO2 single crystal was selectively etched with 20% hydrofluoric acid, while the top surface of TiO2 single crystal subjected to irradiation was not etched. Roughness of the new surface created in the single crystal was within 7nm with the atomic forth microscopy measurement.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1531 ◽  
Author(s):  
Chang Cai ◽  
Shuai Gao ◽  
Peixiong Zhao ◽  
Jian Yu ◽  
Kai Zhao ◽  
...  

Radiation effects can induce severe and diverse soft errors in digital circuits and systems. A Xilinx commercial 16 nm FinFET static random-access memory (SRAM)-based field-programmable gate array (FPGA) was selected to evaluate the radiation sensitivity and promote the space application of FinFET ultra large-scale integrated circuits (ULSI). Picosecond pulsed laser and high energy heavy ions were employed for irradiation. Before the tests, SRAM-based configure RAMs (CRAMs) were initialized and configured. The 100% embedded block RAMs (BRAMs) were utilized based on the Vivado implementation of the compiled hardware description language. No hard error was observed in both the laser and heavy-ion test. The thresholds for laser-induced single event upset (SEU) were ~3.5 nJ, and the SEU cross-sections were correlated positively to the laser’s energy. Multi-bit upsets were measured in heavy-ion and high-energy laser irradiation. Moreover, latch-up and functional interrupt phenomena were common, especially in the heavy-ion tests. The single event effect results for the 16 nm FinFET process were significant, and some radiation tolerance strategies were required in a radiation environment.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 624
Author(s):  
Anquan Wu ◽  
Bin Liang ◽  
Yaqing Chi ◽  
Zhenyu Wu

The reliability of integrated circuits under advanced process nodes is facing more severe challenges. Single-event transients (SET) are an important cause of soft errors in space applications. The SET caused by heavy ions in the 28 nm bulk silicon inverter chains was studied. A test chip with good symmetry layout design was fabricated based on the 28 nm process, and the chip was struck by using 5 kinds of heavy ions with different linear energy transfer (LET) values on heavy-ion accelerator. The research results show that in advanced technology, smaller sensitive volume makes SET cross-section measured at 28 nm smaller than 65 nm by an order of magnitude, the lower critical charge required to generate SET will increase the reliability threat of low-energy ions to the circuit, and high-energy ions are more likely to cause single-event multiple transient (SEMT), which cannot be ignored in practical circuits. The transients pulse width data can be used as a reference for SET modeling in complex circuits.


2015 ◽  
Vol 3 (19) ◽  
pp. 10413-10424 ◽  
Author(s):  
Karun Kumar Jana ◽  
Amit K. Thakur ◽  
Vinod K. Shahi ◽  
Devesh K. Avasthi ◽  
Dipak Rana ◽  
...  

Through channels in thin polymer/nanohybrid films have been made by irradiating with high energy swift heavy ions (SHI) followed by selective chemical etching of the amorphous zone in the latent track created by SHI during the bombardment.


1983 ◽  
Vol 27 ◽  
Author(s):  
P. P. Pronko ◽  
A. W. Mccormick ◽  
D. C. Ingram ◽  
A. K. Rai ◽  
J. A. Woollam ◽  
...  

ABSTRACTIrradiation with high energy heavy ion beams has been investigated as a technique for improving the quality of highly reflecting metallic surfaces to be used as laser mirrors. Properties such as reflectivity, corrosion resistance, film bonding, and threshold to laser surface damage have been examined. Modifications of composition and microstructure of the material associated with the heavy ion irradiation have been measured with RBS, TEM, SEM, Auger, and ESCA. Reflectivity and extinction coefficient measurements were made using ellipsometry techniques. Observations indicate that keV heavy ion irradiations in the fluence range of 1015 to 1016 cm−2 produce significant surface smoothing. Additionally, MeV implants of heavy ions into films of Cu, Ag, Au and Al deposited on molybdenum substrates resulted in improvements to both tarnish resistance and structural bonding integrity.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Aadesh P. Singh ◽  
Saroj Kumari ◽  
Rohit Shrivastav ◽  
Sahab Dass ◽  
Vibha R. Satsangi

AbstractNanostructured hematite thin film for photoelectrochemical (PEC) splitting of water has great potential in the design of low-cost, environmental friendly solar-hydrogen production. Presently, solar-to-hydrogen conversion efficiency of PEC cell using iron oxide is limited by its poor charge transport due to high recombination losses and mismatch of band edges position with the redox level of water. High energy heavy ion irradiation provides the researchers a new dimension to introduce the desired changes in the behaviour of the material, which largely influence their properties. In order to get efficient PEC system, spray-pyrolytically deposited nanostructured hematite thin films were modified by irradiating the samples with 120 MeV Ag9+ ions with fluences ranging from 5×1011 to 1×1013 ions/cm2. Irradiated samples exhibited a partial transition from the hematite to the magnetite phase and reduction in particle size as indicated by XRD and Raman analysis. SEM picture showed a decrease the thickness and porosity of the films after irradiation. These irradiated films, when used in PEC cell showed significantly higher photocurrent density than unirradiated α-Fe2O3.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chenxi Gao ◽  
Jiawei Wang ◽  
Yuan Huang ◽  
Zixuan Li ◽  
Jiyan Zhang ◽  
...  

Zinc-ion batteries (ZIBs) have attracted significant attention owing to their high safety, high energy density, and low cost. ZIBs have been studied as a potential energy device for portable and...


Author(s):  
Marcel Simsek ◽  
Nongnoot Wongkaew

AbstractNon-enzymatic electrochemical sensors possess superior stability and affordability in comparison to natural enzyme-based counterparts. A large variety of nanomaterials have been introduced as enzyme mimicking with appreciable sensitivity and detection limit for various analytes of which glucose and H2O2 have been mostly investigated. The nanomaterials made from noble metal, non-noble metal, and metal composites, as well as carbon and their derivatives in various architectures, have been extensively proposed over the past years. Three-dimensional (3D) transducers especially realized from the hybrids of carbon nanomaterials either with metal-based nanocatalysts or heteroatom dopants are favorable owing to low cost, good electrical conductivity, and stability. In this critical review, we evaluate the current strategies to create such nanomaterials to serve as non-enzymatic transducers. Laser writing has emerged as a powerful tool for the next generation of devices owing to their low cost and resultant remarkable performance that are highly attractive to non-enzymatic transducers. So far, only few works have been reported, but in the coming years, more and more research on this topic is foreseeable. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document