scholarly journals A Novel 3D Encapsulation Structure Based on Subwavelength Structure and Inserted Pyrex Glass for RF MEMS Infrared Detectors

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 974
Author(s):  
Jicong Zhao ◽  
Mingmin Ge ◽  
Chenguang Song ◽  
Ling Sun ◽  
Haiyan Sun

A novel wafer-level three-dimensional (3D) encapsulation structure was designed for radio-frequency microelectromechanical system (RF MEMS) infrared detectors and investigated by using the finite element method (FEM) simulation. A subwavelength structure with a circular array of coaxial apertures was designed to obtain an extraordinary optical transmission (EOT) on top of a silicon substrate. For perpendicular incident light, a maximum transmission of 56% can be achieved in the long-wave infrared (LWIR) region and the transmission bandwidth covered almost the full LWIR region. Moreover, the maximum transmission could be further promoted with an increase in the incident angle. The vertical silicon vias, insulated by inserted Pyrex glass, were used to generate electrical contacts. With the optimized structure parameters, a feed-through level lower than −82 dB, and a transmission coefficient of one single via of more than −0.032 dB were obtained at a frequency from 0 to 2 GHz, which contributed to the low-loss transmission of the RF signals. Due to the matched thermal expansion coefficients (TECs) between silicon and Pyrex glass, the proposed via structure has excellent thermal reliability. Moreover, its thermal stress is much less than that of a conventional through-silicon via (TSV) structure. These calculated results demonstrate that the proposed 3D encapsulation structure shows enormous potential in RF MEMS infrared detector applications.

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000698-000725 ◽  
Author(s):  
Kai Zoschke ◽  
Klaus-Dieter Lang

Further cost reduction and miniaturization of electronic systems requires new concepts for highly efficient packaging of MEMS components like RF resonators or switches, quartz crystals, bolometers, BAWs etc. This paper describes suitable base technologies for the miniaturized, low-cost wafer level chip-scale packaging of such MEMS. The approaches are based on temporary handling and permanent bonding of cap structures using adhesives or solder onto passive or active silicon wafers which are populated with MEMS components or the MEMS wafer themselves. Firstly, an overview of the possible packaging configurations based on different types of MEMS is discussed where TSV based and non-TSV based packaging solutions are distinguished in general. The cap structure for the TSV based solution can have the same size as the MEMS carrying substrate, since the electrical contacts for the MEMS can be routed either thought the cap or base substrate. Thus, full format cap wafers can be used in a regular wafer to wafer bonding process to create the wafer level cavity packages. However, if no TSVs are present in the cap or base substrate, the cap structure needs to be smaller than the base chip, so that electrical contacts outside the cap area can be accessed after the caps were bonded. Such a wafer level capping with caps smaller than the corresponding base chips can be obtained in two ways. The first approach is based on fabrication and singulation of the caps followed by their temporary face up assembly in the desired pattern on a help wafer. In a subsequent wafer to wafer bonding sequence all caps are transferred onto the base wafer. Finally the help wafer is removed from the back side of the bonded caps. This approach of reconfigured wafer bonding is especially used for uniform cap patterns or, if MEMS have an own bond frame structure. In that case no additional cap is required, since the MEMS can act as their own cap. The second approach is based on cap structure fabrication using a compound wafer stack consisting of two temporary bonded wafers. One wafer acts as carrier wafer whereas the other wafer is processed to form cap structures. Processes like thinning, silicon dry etching, deposition and structuring of polymer or metal bonding frames are performed to generate free-standing and face-up directed cap structures. The so created “cap donor wafer” is used in a wafer to wafer bonding process to bond all caps permanently to the corresponding MEMS base wafer. Finally, the temporary bonded carrier wafer is removed from the backside of the transferred caps. With that approach a fully custom specific and selective wafer level capping is possible featuring irregular cap patterns and locations on the MEMS base wafer. Examples like the selective capping process for RF MEMS switches are presented and discussed in detail. All processes were performed at 200mm wafer level.


2021 ◽  
Vol 21 (8) ◽  
pp. 4192-4199
Author(s):  
Hyun-Ji Jeon ◽  
Ji-Yeon Kim ◽  
Jinnil Choi

A structure with periodic sub-wavelength nanohole patterns interacts with incident light and causes extraordinary optical transmission (EOT), with metal nanoparticles leading to localized surface plasmon resonance (LSPR) phenomena. To explore the effects of metal nanoparticles (NPs), optical analysis is performed for metal NP layers with periodic hole patterns. Investigation of Ag NP arrangements and comparisons with metal film structures are presented. Ag NP structures with different hole configuration are explored. Also, the effects of increasing light incident angle are investigated for metal NP structures where EOT peak at 460 nm wavelength is observed. Moreover, electric field distributions at each transmittance peak wavelengths and optical noise are analyzed. As a result, optical characteristics of metal NP structures are obtained and differences in resonance at each wavelength are highlighted.


Author(s):  
Renu Sharma ◽  
Isha Yadav ◽  
Anupriya Katiyar ◽  
Milap Singh ◽  
Shaveta ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
N. V. Lavrik ◽  
P. G. Datskos

Abstract In this work, we describe the design, fabrication, and characterization of purely mechanical miniature resonating structures that exhibit gyroscopic performance comparable to that of more complex microelectromechanical systems. Compared to previous implementations of Coriolis vibratory gyroscopes, the present approach has the key advantage of using excitation and probing that do not require any on-chip electronics or electrical contacts near the resonating structure. More specifically, our design relies on differential optical readout, each channel of which is similar to the “optical lever” readout used in atomic force microscopy. The piezoelectrically actuated stage provides highly efficient excitation of millimeter-scale tuning fork structures that were fabricated using widely available high-throughput wafer-level silicon processing. In our experiments, reproducible responses to rotational rates as low as 1.8 × 103° h−1 were demonstrated using a benchtop prototype without any additional processing of the raw signal. The noise-equivalent rate, ΩNER, derived from the Allan deviation plot, was found to be <0.5° h−1 for a time of 103 s. Despite the relatively low Q factors (<104) of the tuning fork structures operating under ambient pressure and temperature conditions, the measured performance was not limited by thermomechanical noise. In fact, the performance demonstrated in this proof-of-principle study is approximately four orders of magnitude away from the fundamental limit.


Author(s):  
O. Burak Ozdoganlar ◽  
David S. Epp ◽  
Christopher W. Dyck

Ohmic and capacitive switches constitute an important segment of radio frequency microelectromechanical systems (RF-MEMS) components. The main function of these switches is to provide very rapid opening and closing of electrical contacts. To fulfill this requirement, the structural dynamics and coupled-physics response of candidate switch designs must be thoroughly understood. This paper presents a set of dynamic experimentation of two RF-MEMS ohmic switches with different geometries to determine their natural frequencies, mode shapes, and damping characteristics at pressures spanning from vacuum to atmospheric. The experimental facility used for the tests is also described in detail.


2019 ◽  
Vol 5 (1) ◽  
pp. 7-11
Author(s):  
Maksim O. Usik ◽  
Igor V. Bychkov ◽  
Vladimir G. Shavrov ◽  
Dmitry A. Kuzmin

Abstract In the present work we theoretically investigated the excitation of surface plasmon-polaritons (SPPs) in deformed graphene by attenuated total reflection method. We considered the Otto geometry for SPPs excitation in graphene. Efficiency of SPPs excitation strongly depends on the SPPs propagation direction. The frequency and the incident angle of the most effective excitation of SPPs strongly depend on the polarization of the incident light. Our results may open up the new possibilities for strain-induced molding flow of light at nanoscales.


Sign in / Sign up

Export Citation Format

Share Document