scholarly journals Applications in Security and Evasions in Machine Learning: A Survey

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 97 ◽  
Author(s):  
Ramani Sagar ◽  
Rutvij Jhaveri ◽  
Carlos Borrego

In recent years, machine learning (ML) has become an important part to yield security and privacy in various applications. ML is used to address serious issues such as real-time attack detection, data leakage vulnerability assessments and many more. ML extensively supports the demanding requirements of the current scenario of security and privacy across a range of areas such as real-time decision-making, big data processing, reduced cycle time for learning, cost-efficiency and error-free processing. Therefore, in this paper, we review the state of the art approaches where ML is applicable more effectively to fulfill current real-world requirements in security. We examine different security applications’ perspectives where ML models play an essential role and compare, with different possible dimensions, their accuracy results. By analyzing ML algorithms in security application it provides a blueprint for an interdisciplinary research area. Even with the use of current sophisticated technology and tools, attackers can evade the ML models by committing adversarial attacks. Therefore, requirements rise to assess the vulnerability in the ML models to cope up with the adversarial attacks at the time of development. Accordingly, as a supplement to this point, we also analyze the different types of adversarial attacks on the ML models. To give proper visualization of security properties, we have represented the threat model and defense strategies against adversarial attack methods. Moreover, we illustrate the adversarial attacks based on the attackers’ knowledge about the model and addressed the point of the model at which possible attacks may be committed. Finally, we also investigate different types of properties of the adversarial attacks.

2021 ◽  
Author(s):  
Priyanka Gupta ◽  
Lokesh Yadav ◽  
Deepak Singh Tomar

The Internet of Things (IoT) connects billions of interconnected devices that can exchange information with each other with minimal user intervention. The goal of IoT to become accessible to anyone, anytime, and anywhere. IoT has engaged in multiple fields, including education, healthcare, businesses, and smart home. Security and privacy issues have been significant obstacles to the widespread adoption of IoT. IoT devices cannot be entirely secure from threats; detecting attacks in real-time is essential for securing devices. In the real-time communication domain and especially in IoT, security and protection are the major issues. The resource-constrained nature of IoT devices makes traditional security techniques difficult. In this paper, the research work carried out in IoT Intrusion Detection System is presented. The Machine learning methods are explored to provide an effective security solution for IoT Intrusion Detection systems. Then discussed the advantages and disadvantages of the selected methodology. Further, the datasets used in IoT security are also discussed. Finally, the examination of the open issues and directions for future trends are also provided.


2021 ◽  
Vol 30 (1) ◽  
Author(s):  
Francesco Musumeci ◽  
Ali Can Fidanci ◽  
Francesco Paolucci ◽  
Filippo Cugini ◽  
Massimo Tornatore

Abstract Distributed Denial of Service (DDoS) attacks represent a major concern in modern Software Defined Networking (SDN), as SDN controllers are sensitive points of failures in the whole SDN architecture. Recently, research on DDoS attacks detection in SDN has focused on investigation of how to leverage data plane programmability, enabled by P4 language, to detect attacks directly in network switches, with marginal involvement of SDN controllers. In order to effectively address cybersecurity management in SDN architectures, we investigate the potential of Artificial Intelligence and Machine Learning (ML) algorithms to perform automated DDoS Attacks Detection (DAD), specifically focusing on Transmission Control Protocol SYN flood attacks. We compare two different DAD architectures, called Standalone and Correlated DAD, where traffic features collection and attack detection are performed locally at network switches or in a single entity (e.g., in SDN controller), respectively. We combine the capability of ML and P4-enabled data planes to implement real-time DAD. Illustrative numerical results show that, for all tested ML algorithms, accuracy, precision, recall and F1-score are above 98% in most cases, and classification time is in the order of few hundreds of $$\upmu \text {s}$$ μ s in the worst case. Considering real-time DAD implementation, significant latency reduction is obtained when features are extracted at the data plane by using P4 language. Graphic Abstract


The internet has become an irreplaceable communicating and informative tool in the current world. With the ever-growing importance and massive use of the internet today, there has been interesting from researchers to find the perfect Cyber Attack Detection Systems (CADSs) or rather referred to as Intrusion Detection Systems (IDSs) to protect against the vulnerabilities of network security. CADS presently exist in various variants but can be largely categorized into two broad classifications; signature-based detection and anomaly detection CADSs, based on their approaches to recognize attack packets.The signature-based CADS use the well-known signatures or fingerprints of the attack packets to signal the entry across the gateways of secured networks. Signature-based CADS can only recognize threats that use the known signature, new attacks with unknown signatures can, therefore, strike without notice. Alternatively, anomaly-based CADS are enabled to detect any abnormal traffic within the network and report. There are so many ways of identifying anomalies and different machine learning algorithms are introduced to counter such threats. Most systems, however, fall short of complete attack prevention in the real world due system administration and configuration, system complexity and abuse of authorized access. Several scholars and researchers have achieved a significant milestone in the development of CADS owing to the importance of computer and network security. This paper reviews the current trends of CADS analyzing the efficiency or level of detection accuracy of the machine learning algorithms for cyber-attack detection with an aim to point out to the best. CADS is a developing research area that continues to attract several researchers due to its critical objective.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1128
Author(s):  
Mohammad Arshad ◽  
Md. Ali Hussain

Real-time network attacks have become an increasingly serious issue to LAN/WAN security in recent years. As the size of the network flow increases, it becomes difficult to pre-process and analyze the network packets using the traditional network intrusion detection tools and techniques. Traditional NID tools and techniques require high computational memory and time to process large number of packets in incremental manner due to limited buffer size. Web intrusion detection is also one of the major threat to real-time web applications due to unauthorized user’s request to web server and online databases. In this paper, a hybrid real-time LAN/WAN and Web IDS model is designed and implemented using the machine learning classifier. In this model, different types of attacks are detected and labelled prior to train the machine learning model. Future network packets are predicted using the trained machine learning classifier for attack prediction. Experimental results are simulated on real-time LAN/WAN network and client-server web application for performance analysis. Simulated results show that the proposed machine learning based attack detection model is better than the traditional statistical and rule based learning models in terms of time, detection rate are concerned.  


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 308
Author(s):  
Duy Nguyen Duc ◽  
Thong Tran Huu ◽  
Narameth Nananukul

Due to the availability of Industry 4.0 technology, the application of big data analytics to automated systems is possible. The distribution of products between warehouses or within a warehouse is an area that can benefit from automation based on Industry 4.0 technology. In this paper, the focus was on developing a dynamic route-planning system for automated guided vehicles within a warehouse. A dynamic routing problem with real-time obstacles was considered in this research. A key problem in this research area is the lack of a real-time route-planning algorithm that is suitable for the implementation on automated guided vehicles with limited computing resources. An optimization model, as well as machine learning methodologies for determining an operational route for the problem, is proposed. An internal layout of the warehouse of a large consumer product distributor was used to test the performance of the methodologies. A simulation environment based on Gazebo was developed and used for testing the implementation of the route-planning system. Computational results show that the proposed machine learning methodologies were able to generate routes with testing accuracy of up to 98% for a practical internal layout of a warehouse with 18 storage racks and 67 path segments. Managerial insights into how the machine learning configuration affects the prediction accuracy are also provided.


Author(s):  
Bharthavarapu Srikanth ◽  
Geetha Selvarani A. ◽  
Bibhuti Bhusan Sahoo

Discharge prediction methods play crucial role in providing early warnings and helping local people and government agencies to prepare well before flood or managing available water for various purposes. The ability to predict future river flows helps people anticipate and plan for upcoming flooding, preventing deaths and decreasing property destruction. Different hydrological models supporting these predictions have different characteristics, driven by available data and the research area. This study applied two different types of Machine learning techniques to the Tikarpara station present in the lower end of the Mahanadi river basin India. The two Machine learning techniques include Multi-layer perception (MLP) and support vector regression (SVR) MLP has shown great deal of accuracy as compared to SVR across the cases used in the study; based on available data and the study area, MLP showed the best applicability, compared to SVR techniques. MLP out performed SVR model with r2 = 0.75 and lowest RMSE = 0.58.MLP can be used as a promising tool for forecasting monthly discharge at the selected station.


Author(s):  
Maria S. Araujo ◽  
Shane P. Siebenaler ◽  
Edmond M. Dupont ◽  
Samantha G. Blaisdell ◽  
Daniel S. Davila

The prevailing leak detection systems used today on hazardous liquid pipelines (computational pipeline monitoring) do not have the required sensitivities to detect small leaks smaller than 1% of the nominal flow rate. False alarms of any leak detection system are a major industry concern, as such events will eventually lead to alarms being ignored, rendering the leak detection system ineffective [1]. This paper discusses the recent work focused on the development of an innovative remote sensing technology that is capable of reliably and automatically detecting small hazardous liquid leaks in near real-time. The technology is suitable for airborne applications, including manned and unmanned aircraft, ground applications, as well as stationary applications, such as monitoring of pipeline pump stations. While the focus of the development was primarily for detecting liquid hydrocarbon leaks, the technology also shows promise for detecting gas leaks. The technology fuses inputs from various types of optical sensors and applies machine learning techniques to reliably detect “fingerprints” of small hazardous liquid leaks. The optical sensors used include long-wave infrared, short-wave infrared, hyperspectral, and visual cameras. The utilization of these different imaging approaches raises the possibility for detecting spilled product from a past event even if the leak is not actively progressing. In order to thoroughly characterize leaks, tests were performed by imaging a variety of different types of hazardous liquid constitutions (e.g. crude oil, refined products, crude oil mixed with a variety of common refined products, etc.) in several different environmental conditions (e.g., lighting, temperature, etc.) and on various surfaces (e.g., grass, pavement, gravel, etc.). Tests were also conducted to characterize non-leak events. Focus was given to highly reflective and highly absorbent materials/conditions that are typically found near pipelines. Techniques were developed to extract a variety of features across the several spectral bands to identify unique attributes of different types of hazardous liquid constitutions and environmental conditions as well as non-leak events. The characterization of non-leak events is crucial in significantly reducing false alarm rates. Classifiers were then trained to detect small leaks and reject non-leak events (false alarms), followed by system performance testing. The trial results of this work are discussed in this paper.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Md. Shafiur Rahman ◽  
Sajal Halder ◽  
Md. Ashraf Uddin ◽  
Uzzal Kumar Acharjee

AbstractAnomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system.


Sign in / Sign up

Export Citation Format

Share Document