scholarly journals Adaptive Smart Control Method for Electric Vehicle Wireless Charging System

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2685 ◽  
Author(s):  
Lingbing Gong ◽  
Chunyan Xiao ◽  
Bin Cao ◽  
Yuliang Zhou

In order to shorten the wireless charging time of electric vehicles (EVs) and achieve stable charging, an adaptive smart control method for EV wireless charging is proposed in the paper. The method dynamically tracks the rechargeable battery state during the whole charging process, realizes multi-stage charging of constant current (CC) or constant voltage (CV) by switching two kinds of compensation networks of bilateral L3C and L3C-C, and regulates the charging voltage and current to make it as close as possible to the battery charging characteristic curve. This method can be implemented because the voltage source connected to the coupler and the compensation networks of bilateral L3C and L3C-C have the CC and CV source characteristics, respectively. On the basis of the established adaptive smart control system of EV wireless charging, the experiments of wireless data transmission and adaptive smart charging were conducted. The results showed that the designed control system had a response time of less than 200 ms and strong anti-interference ability and it shortened the charging time by about 16% compared with the time using traditional charging methods, thereby achieving a fast, stable, safe, and complete wireless charging process.

2021 ◽  
pp. 107754632110388
Author(s):  
Hongwei Lu ◽  
Zhifei Zhang ◽  
Yansong He ◽  
Zhi Li ◽  
Jujiang Xie ◽  
...  

The realization of the desired damping characteristics based on magnetorheological (MR) dampers is important for semi-active control and useful for the matching process of suspension damper. To reduce the cost of the control system and improve the output accuracy of the desired damping force, this study proposes an open-loop control method featuring an accurate inverse model of the MR damper and a tripolar current driver. The reversible sigmoid model is used to accurately and quickly calculate the desired current. Furthermore, the change characteristic of the desired current is analyzed qualitatively and quantitatively, which shows that the desired current needs to change suddenly to make the actual damping force velocity curve quickly approach the desired one. To meet the demand of the desired current, a tripolar current driver controlled by an improved PI control algorithm is proposed, which is with fast response and low noise. Finally, the bench test verifies that the control system can achieve different desired damping characteristics well, and the inherent error in this process is explained through the gap between the available damping force area and the desired damping characteristic curve and the crossover phenomenon of the dynamic characteristic curves of the MR damper.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 356 ◽  
Author(s):  
Jeong Lee ◽  
Jun-Mo Kim ◽  
Kyung Ryu ◽  
Chung-Yuen Won

Losses in energy storage systems (ESSs) result from losses in battery systems and power conversion systems (PCSs). Thus, the power difference between the input and output occurs as a loss, which is considered an operational cost. Additionally, since battery systems consist of modules, there is always a temperature difference. Even if voltage balancing is conducted, deviations between the state of health (SoH) and state of charge (SoC) always exist. Therefore, a battery characteristic should be considered in relation to the efficient operation of an ESS. In this paper, charging control is implemented based on the SoC. When errors occur in the beginning, the coulomb counting method (CCM) continues to produce errors; it also calculates the SoC through an improved equation. Thus, it can calculate the SoC by using high-accuracy initial values. Moreover, battery deterioration occurs during charging and discharging, which increases a battery’s internal resistance. This reduces the switching time to the battery cut-off voltage or constant voltage (CV) mode, so it becomes possible to calculate the SoH. Therefore, in this paper, the algorithms and equations are proposed to perform SoH operations according to the charging time that is able to reach CV after charging. A conventional battery is usually charged by using constant current (CC) charging until the voltage of the battery module reaches the cut-off area. A switch to CV then occurs when the cut-off area is reached and maintained. However, SoC-based selective charging control is carried out to prevent heat problems. In addition, the battery is charged safely and efficiently by conducting SoH prediction considering the battery thermal characteristics, which vary depending on the charging time and other characteristics. In this paper, a 3 kW ESS was produced, and the proposed algorithm’s feasibility was verified.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 46
Author(s):  
Matteo Dotoli ◽  
Emanuele Milo ◽  
Mattia Giuliano ◽  
Riccardo Rocca ◽  
Carlo Nervi ◽  
...  

The widespread use of electric vehicles is nowadays limited by the “range anxiety” of the customers. The drivers’ main concerns are related to the kilometric range of the vehicle and to the charging time. An optimized fast-charge profile can help to decrease the charging time, without degrading the cell performance and reducing the cycle life. One of the main reasons for battery capacity fade is linked to the Lithium plating phenomenon. This work investigates two methodologies, i.e., three-electrode cell measurement and internal resistance evolution during charging, for detecting the Lithium plating conditions. From this preliminary analysis, it was possible to develop new Multi-Stage Constant-Current profiles, designed to improve the performance in terms of charging time and cells capacity retention with respect to a reference profile. Four new profiles were tested and compared to a reference. The results coming from the new profiles demonstrate a simultaneous improvement in terms of charging time and cycling life, showing the reliability of the implemented methodology in preventing Lithium plating.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2247
Author(s):  
Zbigniew Szular ◽  
Bartosz Rozegnal ◽  
Witold Mazgaj

This paper presents a new soft-switching solution recommended for three-level neutral-point-clamped inverters. The operation principles of the proposed solution, working stages, selection of elements, and the control algorithm are comprehensively discussed herein. The control method of the inverter main switches is the same as that of the switches of an inverter operating according to the hard-switching technique. The correctness of the proposed solution was confirmed by the results of different tests using a laboratory neutral-point-clamped inverter with rated parameters of 3 kW, 2 × 150 V, 12 A, and 3 kHz. Numerical analyses were performed for the inverter of rated power 1.2 MW. The switching losses of the inverter operating with the proposed solution were compared with those of an inverter with hard-switching method. The proposed soft-switching solution increased the inverter efficiency and its competitiveness in relation to other proposals because there were no connections between switches and capacitors or inductors, which pose a risk of damaging the inverter when disturbances in the control system appear.


Author(s):  
Nguyen Thi Diep ◽  
Nguyen Kien Trung ◽  
Tran Trong Minh

This paper presents a design of the wireless charging system for e-byke applications. The double-side LCC compensation circuit is used to achieve high efficiency and reduce the volt-ampere rating. A new constant current/voltage (CC/CV) charging control method at the transmitter side is proposed to avoid dual side wireless communication. This paper also presents a simple method of estimating both the coupling coefficient and load impedance only from the transmitter side. A wireless charging system of 2.5kW is built. Error in the CC/CV charging mode is 3.3% and 1.12%, respectively. System efficiency reaches 92.1% in CC charging mode.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1269 ◽  
Author(s):  
Guodong Chen ◽  
Chao Rao ◽  
Yue Sun ◽  
Zhenxin Chen ◽  
Chunsen Tang ◽  
...  

Aiming at the output control issues of a lithium ion battery wireless charging system, a primary side control method based on load characteristic identification is proposed. The primary side impedance is calculated by detecting the effective value of the primary side voltage and current, and the mapping relationship between the equivalent load and the primary side impedance is established based on the AC impedance model. Using this mapping relation, the output of the secondary side can be regulated indirectly by controlling the input voltage of the inverter. Compared with the traditional control methods, the proposed control method not only eliminates the communication requirement between the primary side and secondary side, but also simplifies the hardware circuit design, reduces the complexity of the control circuit and also reduces the volume and cost of the system. In the paper, the impedance characteristics of the lithium ion battery at constant current and constant voltage stage are analyzed. The principle of the primary side control method is expounded and the realization method is given. The feasibility of the proposed control method is verified by simulation and experiment.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1776
Author(s):  
Boshi Wang ◽  
Haitao Min ◽  
Weiyi Sun ◽  
Yuanbin Yu

With the popularity of electric vehicles (EV), the charging technology has become one of the bottleneck problems that limit the large-scale deployment of EVs. In this paper, a charging method using multi-stage constant current based on SOC (MCCS) is proposed, and then the charging time, charging capacity and temperature increase of the battery are optimized by multi-objective particle swarm optimization (MOPSO) algorithm. The influence of the number of charging stages, the cut-off voltage, the combination of different target weight factors and the ambient temperature on the charging strategy is further compared and discussed. Finally, according to the ambient temperature and users’ requirements of charging time, a charging strategy suitable for the specific situation is obtained by adjusting the weight factors, and the results are analyzed and justified on the basis of the experiments. The results show that the proposed strategy can intelligently make more reasonable adjustments according to the ambient temperature on the basis of meeting the charging demands of users.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-yu Zhu ◽  
Jing-tao Hu ◽  
Lei Gao ◽  
Hao Huang

Broken rotor bars fault detection in inverter-fed squirrel cage induction motors is still as difficult as the dynamics introduced by the control system or the dynamically changing excitation (stator) frequency. This paper introduces a novel fault diagnosis techniques using motor current signature analysis (MCSA) to solve the problems. Switching function concept and frequency modulation theory are firstly used to model fault current signal. The competency of the amplitude of the sideband components at frequencies (1±2s)fsas indices for broken bars recognition is subsequently studied in the controlled motor via open-loop constant voltage/frequency control method. The proposed techniques are composed of five modules of anti-aliasing signal acquisition, optimal-slip-estimation based on torque-speed characteristic curve of squirrel cage motor with different load types, fault characteristic frequency determination, nonparametric spectrum estimation, and fault identification for achieving MCSA efficiently. Experimental and simulation results obtained on 3 kW three-phase squirrel-cage induction motors show that the model and the proposed techniques are effective and accurate.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3934
Author(s):  
Viktor Shevchenko ◽  
Bohdan Pakhaliuk ◽  
Janis Zakis ◽  
Oleksandr Veligorskyi ◽  
Jaroslaw Luszcz ◽  
...  

This paper presents an inductive power transfer system on the basis of a double single-phase three-level T-type inverter and two split transmitting coils for constant current and constant voltage wireless charging of low-voltage light electric vehicle batteries with closed-loop control, considering time-delay communication constraints. An optimal control structure and a modified control strategy were chosen and implemented to the wireless power transfer system as a result of a review and analysis of existing solutions. The control system analysis and adjustment of the coefficients of the regulator using Laplace transform were performed. Our study addressed the behavior of the control system with different time delays as well as the dynamic response of the system. The detecting algorithm of a secondary coil was proposed, which ensured efficient system operation and increased the functionality, safety and usability of the device. The efficiency of energy transfer of 90% was reached at the transmitted power of 110 W, which is at the level of existing solutions considered in the article and opens the way to the commercialization of the proposed solution. Therefore, the feasibility of using a nonclassical multilevel inverter, together with split transmitting coils for wireless charging was confirmed.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Raid Daoud ◽  
Yaareb Al-Khashab

The internet service is provided by a given number of servers located in the main node of internet service provider (ISP). In some cases; the overload problem was occurred because a demand on a given website goes to very high level. In this paper, a fuzzy logic control (FLC) has proposed to distribute the load into the internet servers by a smart and flexible manner. Three effected parameters are tacked into account as input for FLC: link capacity which has three linguistic variables with Gaussian membership function (MF): (small, medium and big), traffic density with linguistic variables (low, normal and high) and channel latency with linguistic variables (empty, half and full); with one output which is the share server status (single, simple and share). The proposed work has been simulated by using MATLAB 2016a, by building a structure in the Fuzzy toolbox. The results were fixed by two manners: the graphical curves and the numerical tables, the surface response was smoothly changed and translates the well-fixed control system. The numerical results of the control system satisfy the idea of the smart rout for the incoming traffics from the users to internet servers. So, the response of the proposed system for the share of server ratio is 0.122, when the input parameter in the smallest levels; and the ratio is 0.879 when the input parameters are in highest level. The smart work and flexible use for the FLC is the main success solution for most of today systems control.


Sign in / Sign up

Export Citation Format

Share Document