scholarly journals Research on Optimal Charging of Power Lithium-Ion Batteries in Wide Temperature Range Based on Variable Weighting Factors

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1776
Author(s):  
Boshi Wang ◽  
Haitao Min ◽  
Weiyi Sun ◽  
Yuanbin Yu

With the popularity of electric vehicles (EV), the charging technology has become one of the bottleneck problems that limit the large-scale deployment of EVs. In this paper, a charging method using multi-stage constant current based on SOC (MCCS) is proposed, and then the charging time, charging capacity and temperature increase of the battery are optimized by multi-objective particle swarm optimization (MOPSO) algorithm. The influence of the number of charging stages, the cut-off voltage, the combination of different target weight factors and the ambient temperature on the charging strategy is further compared and discussed. Finally, according to the ambient temperature and users’ requirements of charging time, a charging strategy suitable for the specific situation is obtained by adjusting the weight factors, and the results are analyzed and justified on the basis of the experiments. The results show that the proposed strategy can intelligently make more reasonable adjustments according to the ambient temperature on the basis of meeting the charging demands of users.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2685 ◽  
Author(s):  
Lingbing Gong ◽  
Chunyan Xiao ◽  
Bin Cao ◽  
Yuliang Zhou

In order to shorten the wireless charging time of electric vehicles (EVs) and achieve stable charging, an adaptive smart control method for EV wireless charging is proposed in the paper. The method dynamically tracks the rechargeable battery state during the whole charging process, realizes multi-stage charging of constant current (CC) or constant voltage (CV) by switching two kinds of compensation networks of bilateral L3C and L3C-C, and regulates the charging voltage and current to make it as close as possible to the battery charging characteristic curve. This method can be implemented because the voltage source connected to the coupler and the compensation networks of bilateral L3C and L3C-C have the CC and CV source characteristics, respectively. On the basis of the established adaptive smart control system of EV wireless charging, the experiments of wireless data transmission and adaptive smart charging were conducted. The results showed that the designed control system had a response time of less than 200 ms and strong anti-interference ability and it shortened the charging time by about 16% compared with the time using traditional charging methods, thereby achieving a fast, stable, safe, and complete wireless charging process.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 46
Author(s):  
Matteo Dotoli ◽  
Emanuele Milo ◽  
Mattia Giuliano ◽  
Riccardo Rocca ◽  
Carlo Nervi ◽  
...  

The widespread use of electric vehicles is nowadays limited by the “range anxiety” of the customers. The drivers’ main concerns are related to the kilometric range of the vehicle and to the charging time. An optimized fast-charge profile can help to decrease the charging time, without degrading the cell performance and reducing the cycle life. One of the main reasons for battery capacity fade is linked to the Lithium plating phenomenon. This work investigates two methodologies, i.e., three-electrode cell measurement and internal resistance evolution during charging, for detecting the Lithium plating conditions. From this preliminary analysis, it was possible to develop new Multi-Stage Constant-Current profiles, designed to improve the performance in terms of charging time and cells capacity retention with respect to a reference profile. Four new profiles were tested and compared to a reference. The results coming from the new profiles demonstrate a simultaneous improvement in terms of charging time and cycling life, showing the reliability of the implemented methodology in preventing Lithium plating.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2388 ◽  
Author(s):  
Guangwei Chen ◽  
Zhitao Liu ◽  
Hongye Su

Optimal fast charging is an important factor in battery management systems (BMS). Traditional charging strategies for lithium-ion batteries, such as the constant current–constant voltage (CC–CV) pattern, do not take capacity aging mechanisms into account, which are not only disadvantageous in the life-time usage of the batteries, but also unsafe. In this paper, we employ the dynamic optimization (DP) method to achieve the optimal charging current curve for a lithium-ion battery by introducing limits on the intercalation-induced stresses and the solid–liquid interface film growth based on an electrochemical–thermal model. Furthermore, the backstepping technique is utilized to control the temperature to avoid overheating. This paper concentrates on solving the issue of minimizing charging time in a given target State of Charge (SoC), while limiting the capacity loss caused by intercalation-induced stresses and film formation. The results indicate that the proposed optimal charging method in this paper offers a good compromise between the charging time and battery aging.


2019 ◽  
Author(s):  
Yiqun Liu ◽  
Y. Gene Liao ◽  
Ming-Chia Lai

Abstract Operating temperature has a significant impact on the performance, safety, and cycle lifetime of the lithium-ion batteries. The operating temperature of a battery is the result of the ambient temperature augmented by the heat generated by the battery. This paper presents the empirical investigation of the effect of ambient temperature on the performance of a Lithium-Nickel-Manganese-Cobalt-Oxide based cell with 3.6V nominal voltage and 20Ah capacity. The experiments are carried out in an environment chamber using five controlled temperatures at −20°C, −10°C, 0°C, 20°C, and 50°C, as the ambient temperatures. In each controlled temperature test, a constant current (10A, 20A, and 40A) continuously discharge the cell to a cut-off 2.5V. The cell discharging voltages and usable capacities are the battery performance indicators. The experimental tests show that discharging voltage at 50% DOD and the total discharging time to reach 2.5V (usable capacity) increase as the ambient temperature increases. The modeling and simulation of a battery cell temperature model is built in the Simulink platform. The correlations show that simulated and experimental discharging curves match well in the 0–80% DOD range and the discrepancy is under 7%. The developed simulation model could provide thermal management guidelines for lithium-ion polymer battery applications in 12 voltage SLI, start-stop, and 48 voltage mild hybrid electric vehicles.


RSC Advances ◽  
2019 ◽  
Vol 9 (37) ◽  
pp. 21498-21506 ◽  
Author(s):  
Fuqiang An ◽  
Rui Zhang ◽  
Zhiguo Wei ◽  
Ping Li

A novel multi-stage-constant-current (MS-CC) charging protocol, which charges high-energy-density lithium-ion cells (LICs) at a faster rate, is presented herein.


2019 ◽  
Author(s):  
Yu Liu ◽  
Meng Xu ◽  
Zhibang Xu ◽  
Xia Wang

Abstract To fast charge lithium ion batteries while achieving higher capacity and limiting temperature rise, a constant current plus pulse current (CCPC) charging protocol is proposed. Parametric study for the CCPC design parameters including the current level, cut-off voltage, and pulse duration is performed experimentally. Taguchi method is adopted to search an optimal charging pattern. Experimental results show that the pulse charge current has the greatest effect on the charging time and temperature rise, while the pulse discharge current has the least effect on both. The optimal pattern from the Taguchi method is able to charge the cylindrical cell 15.6% faster than the traditional constant current constant voltage (CCCV) charging protocol. An electrochemical and thermal coupled model is developed to reveal the working principle of the CCPC. The modeling results show that the CCPC charging protocol reduces the concentration polarization with more uniform lithium ion distribution than the CCCV, thus accelerating the charging process.


AIMS Energy ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 915-933
Author(s):  
Saad Jarid ◽  
◽  
Manohar Das

<abstract> <p>This paper utilizes an integrated electro-thermal model of a lithium-ion battery to search for an optimal multistage constant current charge pattern that will minimize the total charging time of the battery, while restricting its temperature rise in each stage within safe limits. The model consists of two interlinked components, an electrical equivalent circuit model to continuously predict the battery's terminal voltage and a thermal model to continuously predict its temperature rise as charging progresses. The proposed optimization algorithm is based on a novel stepwise single-variable search technique that is very easy to implement and converges quickly. The results of our extensive simulation studies clearly indicate that the proposed charging strategy offers a fast, safe and easy-to-implement alternative to many of the existing computationally intensive optimal charging strategies.</p> </abstract>


Author(s):  
Michael Kirchhof ◽  
Klaus Haas ◽  
Thomas Kornas ◽  
Sebastian Thiede ◽  
Mario Hirz ◽  
...  

The production of lithium-ion battery cells is characterized by a high degree of complexit due to numerous cause-effect relationships between process characteristics. Knowledge about the multi-stage production is spread among several experts, rendering tasks such as failure analysis challenging. In this paper, a method is presented, which includes expert knowledge acquisition in production ramp-up by combining Failure Mode and Effects Analysis (FMEA) with a Bayesian Network. We show the effectiveness of this holistic method by building up a large scale, cross-process Bayesian Failure Network in lithium-ion battery production. Using this model, we are able to conduct root cause analyses as well as analyses of failure propagation. The former support operators in identifying root causes once a cell possesses a specific failure by calculating most-probable explanations matched to the individual battery cell data. The latter enable us to analyze propagation of failures and deviations in the production chain and thus provide support for placement of quality gates, leading to a significant reduction in scrap rate. Moreover, it gives an insight into which process steps are key drivers for which final product characteristics.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2238
Author(s):  
Guan-Jhu Chen ◽  
Yi-Hua Liu ◽  
Yu-Shan Cheng ◽  
Hung-Yu Pai

Lithium-ion (Li-ion) batteries play a substantial role in portable consumer electronics, electric vehicles and large power energy storage systems. For Li-ion batteries, developing an optimal charging algorithm that simultaneously takes rises in charging time and charging temperature into account is essential. In this paper, a model predictive control-based charging algorithm is proposed. This study uses the Thevenin equivalent circuit battery and transforms it into the state-space equation to develop the model predictive controller. The usage of such models in the battery optimal control context has an edge due to its low computational cost, enabling the realization of the proposed technique using a low-cost Digital Signal Processor (DSP). Compared with the widely employed constant current-constant voltage charging method, the proposed charging technique can improve the charging time and the average temperature by 3.25% and 0.76%, respectively.


Sign in / Sign up

Export Citation Format

Share Document