scholarly journals Problems Related to Gasification of Biomass—Properties of Solid Pollutants in Raw Gas

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 963 ◽  
Author(s):  
Jan Najser ◽  
Petr Buryan ◽  
Sergej Skoblia ◽  
Jaroslav Frantik ◽  
Jan Kielar ◽  
...  

Nowadays, thermochemical biomass conversion appears to be a very promising way to process heat and steam generation, for use in a cogeneration unit engine, or for example in gas turbines producing electrical energy. The biggest problem regarding using the syngas in internal combustion engines, are pollutants, which have quite an inauspicious influence on their proper working. This article deals with the establishment of the distribution size of solid particles captured by the fiber filters in the syngas with a suitable cleaning design. Gas was produced in the fixed-bed “Imbert” type generator. Filter cake, which contained pollutants, was captured on a filter and then analyzed. Based on single total solid particles (TSP) components, we conclude that this includes its partial elimination.

Author(s):  
QI CHEN ◽  
◽  
JINTAO SUN ◽  
JIANYU LIU ◽  
BAOMING ZHAO ◽  
...  

Plasma-assisted ignition and combustion, widely applied in gas turbines, scramjets, and internal combustion engines, has been considered as a promising technique in shortening ignition delay time, improving combustion energy efficiency, and reducing emission. Nonequilibrium plasma can excite the gas molecules to higher energy states, directly dissociate or ionize the molecules and, thereby, has the potential to produce reactive species at residence time and location in a combustible mixture and then to efficiently accelerate the overall pyrolysis, oxidation, and ignition. Previous studies have demonstrated the effectiveness of plasma-assisted combustion by using direct current, alternating currant, microwave, radio frequency, and pulsed nanosecond discharge (NSD). Due to the complicated interaction between plasma and combustion in different types of plasma, detailed plasma-combustion chemistry is still not well understood.


Author(s):  
Peter Rez

Everything that rolls along the ground uses energy to overcome both rolling resistance and air resistance. Air resistance is more significant at higher speeds. Repeated accelerations dominate energy use in stop–start city driving. Not surprisingly, heavy, large SUVs use more energy to go a given distance than lighter, more streamlined cars. Due to the mismatch between the torque required and the rotation rate of the drive wheels, internal combustion engines in cars or trucks do not operate at their peak efficiency. Trains are the most efficient form of ground transportation due to both the lower rolling resistance of steel wheels on railroad tracks and the lower air resistance of its long and thin structure. A further advantage is that rail with fixed tracks can take advantage of the efficient generation of electrical energy. This is also obviously the main disadvantage; trains can only go where tracks have been laid.


2021 ◽  
Vol 13 (7) ◽  
pp. 4006
Author(s):  
Lisa Branchini ◽  
Maria Chiara Bignozzi ◽  
Benedetta Ferrari ◽  
Barbara Mazzanti ◽  
Saverio Ottaviano ◽  
...  

Ceramic tile production is an industrial process where energy efficiency management is crucial, given the high amount of energy (electrical and thermal) required by the production cycle. This study presents the preliminary results of a research project aimed at defining the benefits of using combined heat and power (CHP) systems in the ceramic sector. Data collected from ten CHP installations allowed us to outline the average characteristics of prime movers, and to quantify the contribution of CHP thermal energy supporting the dryer process. The electric size of the installed CHP units resulted in being between 3.4 MW and 4.9 MW, with an average value of 4 MW. Data revealed that when the goal is to maximize the generation of electricity for self-consumption, internal combustion engines are the preferred choice due to higher conversion efficiency. In contrast, gas turbines allowed us to minimize the consumption of natural gas input to the spray dryer. Indeed, the fraction of the dryer thermal demand (between 600–950 kcal/kgH2O), covered by CHP discharged heat, is strictly dependent on the type of prime mover installed: lower values, in the range of 30–45%, are characteristic of combustion engines, whereas the use of gas turbines can contribute up to 77% of the process’s total consumption.


2021 ◽  
Vol 70 (2) ◽  
pp. 35-64
Author(s):  
Sebastian Dominik Dziubak

The paper presents the composition of atmospheric air as a mixture of gases that make up the solid and variable components, and the definitions of air pollutants are referenced. Gaseous and solid pollutants (dust) of the atmospheric air have been defined. Dusts were divided according to various criteria and their properties were given. Exemplary courses of immission of the fraction of solid particles are given, indicating a strong dependence of the immission on the seasons, days of the week and day and night. The sources and characteristics of artificial and natural pollutants in the atmospheric air are presented. It has been shown that the main sources of anthropogenic pollution in addition to industry and the automotive industry. Cars are a source of gaseous and particulate pollutants PM, and they also emit pollution from brake and clutch lining wear, as well as from tire and road wear. The main sources of natural air pollution were discussed, including volcanic eruptions, fires in landfills, forests, steppes and sand storms, as well as mineral dust (road dust) carried from the ground by vehicles. The properties of road dust are discussed: chemical and fractional composition, density, dust concentration in the air. It has been shown that the two basic components of the dust, silica and corundum, whose share in dust reaches 95%, also have the highest hardness, which may have a decisive influence on the wear of engine components. Various valuesof dust concentration in the air were presented depending on the type and condition of the ground and the conditions of use of vehicles. Keywords: mechanical engineering, internal combustion engines, air pollution sources, road dust


MRS Bulletin ◽  
2005 ◽  
Vol 30 (8) ◽  
pp. 581-586 ◽  
Author(s):  
Robert W. Lashway

AbstractThe articles in this issue of MRS Bulletin highlight the enormous potential of fuel cells for generating electricity using multiple fuels and crossing a wide range of applications. Fuel cells convert chemical energy directly into electrical energy, and as a powergeneration module, they can be viewed as a continuously operating battery.They take in air (or pure oxygen, for aerospace or undersea applications) and hydrocarbon or hydrogen fuel to produce direct current at various outputs. The electrical output can be converted and then connected to motors to generate much cleaner and more fuelefficient power than is possible from internal combustion engines, even when combined with electrical generators in today's hybrid engines. The commercialization of these fuel cell technologies is contingent upon additional advances in materials science that will suit the aggressive electrochemical environment of fuel cells (i.e., both reducing an oxidizing) and provide ionic and electrical conductance for thousands of hours of operation.


2019 ◽  
Vol 113 ◽  
pp. 02005
Author(s):  
D. Rattazzi ◽  
M. Rivarolo ◽  
T. Lamberti ◽  
L. Magistri

This paper aims to develop a tool for the performances comparison of innovative energy systems on board ships, both for concentrated and distributed generation applications. In the first part of the study, the tool database has been developed throughout a wide analysis of the available market solutions in terms of energy generation devices (i.e. fuel cells, internal combustion engines, micro gas turbines), fuels (hydrogen, natural gas, diesel) and related storage technologies. Many of these data have been collected also thanks to the laboratory experience of the authors’ research group on different innovative energy systems. From the database, a wide range of maps has been created, correlating costs, volumes, weights and emissions with the installed power and the operational hours required, given by the user as input. The tool highlights the best solution according to the different relevance chosen by the user for each key parameter (i.e. costs, volumes, emissions). In the second part, two different case studies are presented in order to underline how the installed power, the different ship typology and the user requirements affect the choice of the best solution. It is worth noting that the methodology has a general value, as the tool can be applied to both the design of new ships, and to the retrofit of already existing ships in order to respect new requirements (e.g. more and more stringent normative in terms of pollutant emissions in ports and restricted areas). Furthermore, the database can be easily extended to other generation and storage technologies.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 465
Author(s):  
Ashraf Elfasakhany ◽  
Mishal Alsehli ◽  
Bahaa Saleh ◽  
Ayman A. Aly ◽  
Mohamed Bassuoni

Biomass is currently one of the world’s major renewable energy sources. Biomass in a powder form has been recently proposed as the most encouraging of biomass contours, especially because it burns like a gas. In the current study, biomass powder was examined, for the first time, as a direct solid fuel in internal combustion engines. The aim of the current study was to investigate modeling tools for simulation of biomass powder in combustion engines (CE). The biomass powder applied was in a micro-scale size with a typical irregular shape; the powder length was in the range of 75−5800 μm, and the diameter was in the range 30−1380 μm. Different mechanisms for biomass powder drying and devolatilization/gasification were proposed, including different schemes’ and mechanisms’ rate constants. A comparison between the proposed models and experiments was carried out and results showed good matching. Nevertheless, it is important that a biomass powder simulation addresses overlapping/complicated sub-process. During biomass powder combustion, tar was shown to be formed at a rate of 57 wt.%, and, accordingly, the formation and thermal decomposition of tar were modelled in the study, with the results demonstrating that the tar was formed and then disintegrated at temperatures between 700 and 1050 K. Through biomass powder combustion, moisture, tar, and gases were released, mostly from one lateral of particles, which caused ejection of the solid particles. These new phenomena were investigated experimentally and modeled as well. Results also showed that all the proposed models, along with their rate constants, activation energies, and other models’ parameters, were capable of reproducing the mass yields of gases, tar, and char at a wide range of working temperatures. The results showed that the gasification/devolatilization model 3 is somewhat simple and economical in the simulation/computation scheme, however, models 1 and 2 are rather computationally heavy and complicated.


1943 ◽  
Vol 10 (3) ◽  
pp. A123-A130
Author(s):  
Joseph H. Keenan ◽  
Joseph Kaye

Abstract Over the range of conditions for which the equation pv = RT represents satisfactorily the p-v-T relation, a table having a single argument, the temperature, serves all the purposes which are served by vapor tables (steam tables, ammonia tables, etc.) having two arguments. A table of this sort with intervals small enough for linear interpolation is presented for dry air. Data from this table are compared with corresponding values from the tables of Sage and Lacey. The use of the table is illustrated with examples of the calculation of processes involved in air compressors, nozzles, internal-combustion engines, and gas turbines.


2021 ◽  
Vol 13 (11) ◽  
pp. 5864
Author(s):  
Juan J. García-Pabón ◽  
Dario Méndez-Méndez ◽  
Juan M. Belman-Flores ◽  
Juan M. Barroso-Maldonado ◽  
Ali Khosravi

ORC technology is one of the most promising technologies for the use of residual energy in the generation of electrical energy, offering simple and environmentally friendly alternatives. In this field, the selection of working fluids plays an important role in the operation of the cycle, whether in terms of the energy efficiency or the minimization of environmental impacts. Therefore, in this paper, a comprehensive review is presented on the use of R1234yf refrigerant and its mixtures as working fluids in ORC systems. These fluids are used in low- and medium-temperature applications for the use of residual energy generated from solar energy, geothermal energy, and internal combustion engines. It was concluded that R1234yf and its mixtures are competitive as compared with conventional refrigerants used in ORC.


Sign in / Sign up

Export Citation Format

Share Document