scholarly journals 3D Printing for Energy-Saving: Evidence from Hydraulic Manifolds Design

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2462 ◽  
Author(s):  
Jun-hui Zhang ◽  
Gan Liu ◽  
Ruqi Ding ◽  
Kun Zhang ◽  
Min Pan ◽  
...  

With the compact circuit layout and small size, hydraulic manifolds sometimes cause high pressure loss. The purpose of this paper is to investigate the pressure loss under different circumstances with various geometry features and present solutions to reduce pressure loss. The pressure loss performance is evaluated by both experimental and numerical methods. Verified by the experiments, the numerical simulations are qualified to depict the correct trend of the pressure drop. After the basic analysis of traditional passages, three novel forms are proposed, which are very hard to be manufactured by a common method. Furthermore, the geometrical features are selected optimally by means of full factorial experiments to balance the pressure loss and space requirement. Moreover, taking advantage of 3D printing, it is possible to build the passages in novel forms which are beyond the capacity of conventional manufacturing. Results show that the pressure loss can be reduced considerably by adopting a smooth transition, where the reduction can reach up to 50%.

2020 ◽  
Vol 14 (4) ◽  
pp. 7446-7468
Author(s):  
Manish Sharma ◽  
Beena D. Baloni

In a turbofan engine, the air is brought from the low to the high-pressure compressor through an intermediate compressor duct. Weight and design space limitations impel to its design as an S-shaped. Despite it, the intermediate duct has to guide the flow carefully to the high-pressure compressor without disturbances and flow separations hence, flow analysis within the duct has been attractive to the researchers ever since its inception. Consequently, a number of researchers and experimentalists from the aerospace industry could not keep themselves away from this research. Further demand for increasing by-pass ratio will change the shape and weight of the duct that uplift encourages them to continue research in this field. Innumerable studies related to S-shaped duct have proven that its performance depends on many factors like curvature, upstream compressor’s vortices, swirl, insertion of struts, geometrical aspects, Mach number and many more. The application of flow control devices, wall shape optimization techniques, and integrated concepts lead a better system performance and shorten the duct length.  This review paper is an endeavor to encapsulate all the above aspects and finally, it can be concluded that the intermediate duct is a key component to keep the overall weight and specific fuel consumption low. The shape and curvature of the duct significantly affect the pressure distortion. The wall static pressure distribution along the inner wall significantly higher than that of the outer wall. Duct pressure loss enhances with the aggressive design of duct, incursion of struts, thick inlet boundary layer and higher swirl at the inlet. Thus, one should focus on research areas for better aerodynamic effects of the above parameters which give duct design with optimum pressure loss and non-uniformity within the duct.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4417
Author(s):  
Tingting Xu ◽  
Hongxia Zhao ◽  
Miao Wang ◽  
Jianhui Qi

Printed circuit heat exchangers (PCHEs) have the characteristics of high temperature and high pressure resistance, as well as compact structure, so they are widely used in the supercritical carbon dioxide (S-CO2) Brayton cycle. In order to fully study the heat transfer process of the Z-type PCHE, a numerical model of traditional Z-type PCHE was established and the accuracy of the model was verified. On this basis, a new type of spiral PCHE (S-ZPCHE) is proposed in this paper. The segmental design method was used to compare the pressure changes under 5 different spiral angles, and it was found that increasing the spiral angle θ of the spiral structure will reduce the pressure drop of the fluid. The effects of different spiral angles on the thermal-hydraulic performance of S-ZPCHE were compared. The results show that the pressure loss of fluid is greatly reduced, while the heat transfer performance is slightly reduced, and it was concluded that the spiral angle of 20° is optimal. The local fluid flow states of the original structure and the optimal structure were compared to analyze the reason for the pressure drop reduction effect of the optimal structure. Finally, the performance of the optimal structure was analyzed under variable working conditions. The results show that the effect of reducing pressure loss of the new S-ZPCHE is more obvious in the low Reynolds number region.


Author(s):  
S. Zerobin ◽  
C. Aldrian ◽  
A. Peters ◽  
F. Heitmeir ◽  
E. Göttlich

This paper presents an experimental study of the impact of individual high-pressure turbine purge flows on the main flow in a downstream turbine center frame duct. Measurements were carried out in a product-representative one and a half stage turbine test setup, installed in the Transonic Test Turbine Facility at Graz University of Technology. The rig allows testing at engine-relevant flow conditions, matching Mach, Reynolds, and Strouhal number at the inlet of the turbine center frame. The reference case features four purge flows differing in flow rate, pressure, and temperature, injected through the hub and tip, forward and aft cavities of the high-pressure turbine rotor. To investigate the impact of each individual cooling flow on the flow evolution in the turbine center frame, the different purge flows were switched off one-by-one while holding the other three purge flow conditions. In total, this approach led to six different test conditions when including the reference case and the case without any purge flow ejection. Detailed measurements were carried out at the turbine center frame duct inlet and outlet for all six conditions and the post-processed results show that switching off one of the rotor case purge flows leads to an improved duct performance. In contrast, the duct exit flow is dominated by high pressure loss regions if the forward rotor hub purge flow is turned off. Without the aft rotor hub purge flow, a reduction in duct pressure loss is determined. The purge flows from the rotor aft cavities are demonstrated to play a particularly important role for the turbine center frame aerodynamic performance. In summary, this paper provides a first-time assessment of the impact of four different purge flows on the flow field and loss generation mechanisms in a state-of-the-art turbine center frame configuration. The outcomes of this work indicate that a high-pressure turbine purge flow reduction generally benefits turbine center frame performance. However, the forward rotor hub purge flow actually stabilizes the flow in the turbine center frame duct and reducing this purge flow can penalize turbine center frame performance. These particular high-pressure turbine/turbine center frame interactions should be taken into account whenever high-pressure turbine purge flow reductions are pursued.


2019 ◽  
Vol 10 (1) ◽  
pp. 51-56
Author(s):  
Aleš Rubina ◽  
Olga Rubinová ◽  
Petr Blasinski

Nanotechnology is a perspective manufacturing technology, and in the technical fields, it deals with the production, development and utilization of technologies and materials with dimensions in nanometre sizes (1–100 nm). Nanofilters used in the article for filtration purposes consist from a nanolayer which is applied to a coarse textile backing layer, and they are inserted into the frames as conventional textile filters. The most commonly used materials are PP and PE polymers, as well as carbon, glass and metal filters. With the fabrication of nanotechnology-based filter, it is very important to choose materials, polymers with specific properties, which can be used for filtration function of the product itself. The results given in the main article compare the nanofilters with the main representatives of existing filter products currently available on the market. There is a problem with high pressure loss of the nanomaterial, and when we compare them with traditional filters, it is difficult to use them in technical practice, even if there exists the possibility for us to define the material and the thickness of the layer which are adapted to the application-specific application conditions.


2013 ◽  
Vol 37 (5) ◽  
pp. 551-557
Author(s):  
Chan-Hong Park ◽  
Byeong-Ho Park ◽  
Jong-Dae Park ◽  
Hyeon-Kyeong Seong ◽  
Lee-Young Lim

1959 ◽  
Vol 63 (584) ◽  
pp. 474-475 ◽  
Author(s):  
P. G. Morgan

The Flow of Fluids through screens has been widely studied with particular importance being attached to the measurement of the pressure drop caused by a screen and its relation to the screen geometry and the flow conditions. The majority of the investigations have been carried out on wire gauze screens mounted in ducts with air passing through them, the static pressure being measured on either side of the gauze. Attempts have been made by Weighardt Annand and Grootenhuisto correlate the gauze geometry with the pressure drop and to enable the pressure loss over a given screen and with given flow conditions to be predicted.


Author(s):  
Moyse´s Alberto Navarro ◽  
Andre´ Augusto Campagnole dos Santos

The spacer grids exert great influence on the thermal hydraulic performance of the PWR fuel assembly. The presence of the spacers has two antagonistic effects on the core: an increase of pressure drop due to constriction on the coolant flow area and increase of the local heat transfer downstream the grids caused by enhanced coolant mixing. The mixing vanes, present in most of the spacer grid designs, cause a cross and swirl flow between and in the subchannels, enhancing even more the local heat transfer at the cost of more pressure loss. Due to this important hydrodynamic feature the spacer grids are often improved aiming to obtain an optimal commitment between pressure drop and enhanced heat transfer. In the present work, the fluid dynamic performance downstream a 5 × 5 rod bundle with spacer grids is analyzed with a commercial CFD code (CFX 11.0). Eleven different split vane spacer grids with angles from 16° to 36° and a spacer without vanes were evaluated. The computational domain extends from ∼10 Dh upstream to ∼50 Dh downstream the spacer grids. The standard k-ε turbulence model with scalable wall functions and the total energy model were used in the simulations. The results show a considerable increase of the average Nusselt number and secondary mixing with the angle of the vane up to ∼20 Dh downstream the spacer, reducing greatly the influence of the vane angle beyond this region. As expected, the pressure loss through the spacer grid also showed considerable increase with the vane angle.


Sign in / Sign up

Export Citation Format

Share Document