scholarly journals Application of nanofilters for ventilation

2019 ◽  
Vol 10 (1) ◽  
pp. 51-56
Author(s):  
Aleš Rubina ◽  
Olga Rubinová ◽  
Petr Blasinski

Nanotechnology is a perspective manufacturing technology, and in the technical fields, it deals with the production, development and utilization of technologies and materials with dimensions in nanometre sizes (1–100 nm). Nanofilters used in the article for filtration purposes consist from a nanolayer which is applied to a coarse textile backing layer, and they are inserted into the frames as conventional textile filters. The most commonly used materials are PP and PE polymers, as well as carbon, glass and metal filters. With the fabrication of nanotechnology-based filter, it is very important to choose materials, polymers with specific properties, which can be used for filtration function of the product itself. The results given in the main article compare the nanofilters with the main representatives of existing filter products currently available on the market. There is a problem with high pressure loss of the nanomaterial, and when we compare them with traditional filters, it is difficult to use them in technical practice, even if there exists the possibility for us to define the material and the thickness of the layer which are adapted to the application-specific application conditions.

2020 ◽  
Vol 14 (4) ◽  
pp. 7446-7468
Author(s):  
Manish Sharma ◽  
Beena D. Baloni

In a turbofan engine, the air is brought from the low to the high-pressure compressor through an intermediate compressor duct. Weight and design space limitations impel to its design as an S-shaped. Despite it, the intermediate duct has to guide the flow carefully to the high-pressure compressor without disturbances and flow separations hence, flow analysis within the duct has been attractive to the researchers ever since its inception. Consequently, a number of researchers and experimentalists from the aerospace industry could not keep themselves away from this research. Further demand for increasing by-pass ratio will change the shape and weight of the duct that uplift encourages them to continue research in this field. Innumerable studies related to S-shaped duct have proven that its performance depends on many factors like curvature, upstream compressor’s vortices, swirl, insertion of struts, geometrical aspects, Mach number and many more. The application of flow control devices, wall shape optimization techniques, and integrated concepts lead a better system performance and shorten the duct length.  This review paper is an endeavor to encapsulate all the above aspects and finally, it can be concluded that the intermediate duct is a key component to keep the overall weight and specific fuel consumption low. The shape and curvature of the duct significantly affect the pressure distortion. The wall static pressure distribution along the inner wall significantly higher than that of the outer wall. Duct pressure loss enhances with the aggressive design of duct, incursion of struts, thick inlet boundary layer and higher swirl at the inlet. Thus, one should focus on research areas for better aerodynamic effects of the above parameters which give duct design with optimum pressure loss and non-uniformity within the duct.


Author(s):  
S. Zerobin ◽  
C. Aldrian ◽  
A. Peters ◽  
F. Heitmeir ◽  
E. Göttlich

This paper presents an experimental study of the impact of individual high-pressure turbine purge flows on the main flow in a downstream turbine center frame duct. Measurements were carried out in a product-representative one and a half stage turbine test setup, installed in the Transonic Test Turbine Facility at Graz University of Technology. The rig allows testing at engine-relevant flow conditions, matching Mach, Reynolds, and Strouhal number at the inlet of the turbine center frame. The reference case features four purge flows differing in flow rate, pressure, and temperature, injected through the hub and tip, forward and aft cavities of the high-pressure turbine rotor. To investigate the impact of each individual cooling flow on the flow evolution in the turbine center frame, the different purge flows were switched off one-by-one while holding the other three purge flow conditions. In total, this approach led to six different test conditions when including the reference case and the case without any purge flow ejection. Detailed measurements were carried out at the turbine center frame duct inlet and outlet for all six conditions and the post-processed results show that switching off one of the rotor case purge flows leads to an improved duct performance. In contrast, the duct exit flow is dominated by high pressure loss regions if the forward rotor hub purge flow is turned off. Without the aft rotor hub purge flow, a reduction in duct pressure loss is determined. The purge flows from the rotor aft cavities are demonstrated to play a particularly important role for the turbine center frame aerodynamic performance. In summary, this paper provides a first-time assessment of the impact of four different purge flows on the flow field and loss generation mechanisms in a state-of-the-art turbine center frame configuration. The outcomes of this work indicate that a high-pressure turbine purge flow reduction generally benefits turbine center frame performance. However, the forward rotor hub purge flow actually stabilizes the flow in the turbine center frame duct and reducing this purge flow can penalize turbine center frame performance. These particular high-pressure turbine/turbine center frame interactions should be taken into account whenever high-pressure turbine purge flow reductions are pursued.


Author(s):  
Vaclav Slama ◽  
Lukas Mrozek ◽  
Bartolomej Rudas ◽  
David Simurda ◽  
Jindrich Hala ◽  
...  

Abstract Aerodynamic measurements and numerical simulations carried out on a model of a high-pressure valve assembly used for nozzle governing of a turbine with 135MW output are described in this paper. Aim of the study is to investigate effects of control valve’s strainers on pressure losses and unsteadiness in the flow field. It is an important task since undesirable flow fluctuations can lead to operational reliability issues. Measurements were carried out in the Aerodynamic laboratory of the Institute of Thermomechanics of the Czech Academy of Sciences (IT) where an aerodynamic tunnel is installed. Numerical simulations were carried out in the Doosan Skoda Power (DSP) Company using ANSYS software tools. The experimental model consists of one of two identical parts of the real valve assembly. It means it consists of an inlet pipeline, a stop valve, a valve chamber with two independent control valves, its diffusers and outlet pipelines. The numerical model consists of both assembly parts and includes also an A-wheel control stage in order to simulate the real turbine operating points. The different lifts of the main cone in each control valve for its useful combinations were investigated. Results were evaluated on the model with control valve’s strainers, which were historically used in order to stabilize the flow, and without them. The results of the experimental measurement were compared with the numerical results in the form of pressure losses prediction. From measured pressure fluctuations, it was found out where and for which conditions a danger of flow instabilities occurs. It can be concluded that there is a border, in terms of operating conditions, where the flow field starts to be unstable and this border is different dependent of the fact whether the control valve’s strainers are used or not. Therefore, the areas of safe and danger operational reliability can be predicted. The influence of the control valve’s strainers on the maximal amplitude of periodic fluctuations appears only for the cases when valves are highly overloaded. For normal operating conditions, there is no difference. As a result, the control valve’s strainers do not have to be used in standard applications of valve assemblies. Furthermore, a loss model for valve pressure loss estimation could be updated. Therefore, a pressure loss should be predicted with a sufficient accuracy for each new turbine bid with similar valve assemblies.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2462 ◽  
Author(s):  
Jun-hui Zhang ◽  
Gan Liu ◽  
Ruqi Ding ◽  
Kun Zhang ◽  
Min Pan ◽  
...  

With the compact circuit layout and small size, hydraulic manifolds sometimes cause high pressure loss. The purpose of this paper is to investigate the pressure loss under different circumstances with various geometry features and present solutions to reduce pressure loss. The pressure loss performance is evaluated by both experimental and numerical methods. Verified by the experiments, the numerical simulations are qualified to depict the correct trend of the pressure drop. After the basic analysis of traditional passages, three novel forms are proposed, which are very hard to be manufactured by a common method. Furthermore, the geometrical features are selected optimally by means of full factorial experiments to balance the pressure loss and space requirement. Moreover, taking advantage of 3D printing, it is possible to build the passages in novel forms which are beyond the capacity of conventional manufacturing. Results show that the pressure loss can be reduced considerably by adopting a smooth transition, where the reduction can reach up to 50%.


Author(s):  
Kenta Mizutori ◽  
Koji Fukudome ◽  
Makoto Yamamoto ◽  
Masaya Suzuki

Abstract We performed numerical simulation to understand deposition phenomena on high-pressure turbine vane. Several deposition models were compared and the OSU model showed good adaptation to any flow field and material, so it was implemented on UPACS. After the implementation, the simulations of deposition phenomenon in several cases of the flow field were conducted. From the results, particles adhere on the leading edge and the trailing edge side of the pressure surface. Also, the calculation of the total pressure loss coefficient was conducted after computing the flow field after deposition. The total pressure loss coefficient increased after deposition and it was revealed that the deposition deteriorates aerodynamic performance.


Author(s):  
Zhihua Zhou ◽  
Shaowen Chen ◽  
Songtao Wang

Tip clearance flow between rotating blades and the stationary casing in high-pressure turbines is very complex and is one of the most important factors influencing turbine performance. The rotor with a winglet-cavity tip is often used as an effective method to improve the loss resulting from the tip clearance flow. In this study, an aerodynamic geometric optimisation of a winglet-cavity tip was carried out in a linear unshrouded high-pressure axial turbine cascade. For the purpose of shaping the efficient winglet geometry of the rotor tip, a novel parameterisation method has been introduced in the optimisation procedure based on the computational fluid dynamics simulation and analysis. The reliability of a commercial computational fluid dynamics code with different turbulence models was first validated by contrasting with the experimental results, and the numerical total pressure loss and flow angle using the Baseline k-omega Model (BSL κ-ω model) shows a better agreement with the test data. Geometric parameterisation of blade tips along the pressure side and suction side was adopted to optimise the tip clearance flow, and an optimal winglet-cavity tip was proven to achieve lower tip leakage mass flow rate and total pressure loss than the flat tip and cavity tip. Compared to the numerical results of flat tip and cavity tip, the optimised winglet-cavity design, with the winglet along the pressure side and suction side, had lower tip leakage mass flow rate and total pressure loss. It offered a 35.7% reduction in the change ratio [Formula: see text]. In addition, the optimised winglet along pressure side and suction side, respectively, by using the parameterisation method was studied for investigating the individual effect of the pressure-side winglet and suction-side winglet on the tip clearance flow. It was found that the suction-side extension of the optimal winglet resulted in a greater reduction of aerodynamic loss and leakage mass flow than the pressure-side extension of the optimal winglet. Moreover, with the analysis based on the tip flow pattern, the numerical results show that the pressure-side winglet reduced the contraction coefficient, and the suction-side winglet reduced the aerodynamic loss effectively by decreasing the driving pressure difference near the blade tips, the leakage flow velocity, and the interaction between the leakage flow and the main flow. Overall, a better aerodynamic performance can be obtained by adopting the pressure-side and suction-side winglet-cavity simultaneously.


Author(s):  
Qingzong Xu ◽  
Pei Wang ◽  
Qiang Du ◽  
Jun Liu ◽  
Guang Liu

With the increasing demand of high bypass ratio and thrust-to-weight ratio in civil aero-engine, the intermediate turbine duct between the high pressure and low pressure turbines of a modern gas turbine tends to shorter axial length, larger outlet-to-inlet area ratio and high pressure-to-low pressure radial offset. This paper experimentally and numerically investigated the three-dimensional flow characteristics of traditional (ITD1) and aggressive intermediate turbine duct (ITD2) at low Reynolds number. The baseline case of ITD1 is representative of a traditional intermediate turbine duct of aero-engine design with non-dimensional length of L/dR = 2.79 and middle angle of 20.12°. The detailed flow fields inside ITD1 and flow visualization were measured. Results showed the migration of boundary layer and a pair of counter-rotating vortexes were formed due to the radial migration of low momentum fluid. With the decreasing axial length of intermediate turbine duct, the radial and streamwise reverse pressure gradient in aggressive intermediate turbine duct (ITD2) were increased resulting in severe three-dimensional separation of boundary layer near casing surface and higher total pressure loss. The secondary flow and separation of boundary layer near the endwall were deeply analyzed to figure out the main source of high total pressure loss in the aggressive intermediate turbine duct (ITD2). Based on that, employing wide-chord guide vane to substitute “strut + guide vane”, this paper designed the super-aggressive intermediate turbine duct and realized the suppression of the three-dimensional separation and secondary flow.


2016 ◽  
Vol 14 (1) ◽  
pp. 299-307 ◽  
Author(s):  
Jie Gao ◽  
Xuedi Hao ◽  
Liang Wang ◽  
Peng Wang

AbstractPipeline transportation is the best way to send the coal slime to circulating fluid bed boilers. The pressure loss of coal slime in pipeline transportation should be calculated accurately which has close relationship with the system design. In this paper, the influencing factors of coal slime pressure loss in pipe flow at high pressure were investigated at a designed test facility. The experimental results show that pressure loss is directly proportional to flow rate, but inversely proportional to pipe diameter. It is also found that the pressure loss has a complex exponential relationship with volume concentration. Based on the results above, a new calculation model for pressure loss of coal slime was built up. The coefficients in the calculation model were determined from the experimental data by means of nonlinear curve fitting step by step. The validity of this calculation model was verified by the experiments carried out on the large-scale circular pipeline transportation system which has the same parameters with industrial application.


Author(s):  
Byoung Ik Choi ◽  
Kui Soon Kim ◽  
Man Yeong Ha ◽  
Ji Hwan Jeong ◽  
Jong Rae Cho ◽  
...  

A computational study for the optimal design of heat exchangers used in a high temperature and high pressure system is presented. Two types of air to air heat exchangers are considered in this study. One is a single-pass cross-flow type with straight plain tubes and the other is a two-pass cross-counter flow type with plain U-tubes. These two types of heat exchangers have the staggered arrangement of tubes. The design models are formulated using the number of transfer units (ε-NTU method) and optimized using a genetic algorithm. In order to design compact light weight heat exchangers with the minimum pressure loss and the maximum heat exchange rate, the weight of heat exchanger core is chosen as the object function. Dimensions and tube pitch ratio of a heat exchanger are used as design variables. Demanded performance such as the pressure loss (ΔP) and the temperature drop (ΔP) are used as constraints. The performance of heat exchangers is discussed and their optimal designs are presented with an investigation of the effect of design variables and constraints.


Sign in / Sign up

Export Citation Format

Share Document