scholarly journals Wide Load Range ZVS Three-level DC-DC Converter: Modular Structure, Redundancy Ability, and Reduced Filters Size

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3537 ◽  
Author(s):  
Yong Shi ◽  
Zhuoyi Xu

In future dc distributed power systems, high performance high voltage dc-dc converters with redundancy ability are welcome. However, most existing high voltage dc-dc converters do not have redundancy ability. To solve this problem, a wide load range zero-voltage switching (ZVS) three-level (TL) dc-dc converter is proposed, which has some definitely good features. The primary switches have reduced voltage stress, which is only Vin/2. Moreover, no extra clamping component is needed, which results simple primary structure. Redundancy ability can be obtained by both primary and secondary sides, which means high system reliability. With proper designing of magnetizing inductance, all primary switches can obtain ZVS down to 0 output current, and in addition, the added conduction loss can be neglected. TL voltage waveform before the output inductor is obtained, which leads small volume of the output filter. Four secondary MOSFETs can be switched in zero-current switching (ZCS) condition over wide load range. Finally, both the primary and secondary power stages are modular architecture, which permits realizing any given system specifications by low voltage, standardized power modules. The operation principle, soft switching characteristics are presented in this paper, and the experimental results from a 1 kW prototype are also provided to validate the proposed converter.

The conventional Bidirectional Full-bridge dc -dc converter is inefficient and may not be practical for the low power applications. This paper specifies an efficient DC-DC Converter that avoids power losses by using soft switching techniques like Zero Voltage Switching and Zero Current switching. The soft switching of Bidirectional Full-bridge DC-DC Converter operates as a buck converter when the power is positive and as a boost converter when the power flow is negative. Applications of soft switching Bidirectional Full-bridge DC-DC Converter are uninterrupted power supplies (UPS), distribution Systems, battery charger circuits, telecom power supplies, computer power systems. Detailed analysis of the converter is carried out in buck mode to obtain relations between the power circuit parameters. Based on the analysis, control schemes are described to operate the converter. The proposed full bridge DC-DC converter is simulated in Buck mode using MATLAB /SIMULINK.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 231 ◽  
Author(s):  
Jingwen Chen ◽  
Xiaofei Li ◽  
Hongshe Dang ◽  
Yong Shi

This paper discusses some wide-range soft-switching full-bridge (FB) modular multilevel dc–dc converters (MMDCs), and a comparative evaluation of these FB MMDCs is also presented. The discussed topologies have all merits belonging to conventional FB MMDCs, e.g., smaller voltage stress on the primary switches, no added primary clamping devices and modular primary structure. In addition, the primary switches in each converter can obtain zero-voltage switching (ZVS) or zero-current switching (ZCS) in a wide load range. Two presented topologies are selected as examples to discuss in detail. The proposed FB MMDCs are assessed and evaluated based on performance, components and topology structure indices, such as soft switching characteristics, current stress, power loss distribution, number of added devices, complexity of structure and added cost. Experimental results are also included to verify the feasibility and advantages of the new topologies.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 363 ◽  
Author(s):  
Alfredo Medina-Garcia ◽  
Manfred Schlenk ◽  
Diego Morales ◽  
Noel Rodriguez

In this article, an innovative power adaptor based on the asymmetrical pulse width modulation (PWM) flyback topology will be presented. Its benefits compared to other state-of-the-art topologies, such as the active clamp flyback, are analyzed in detail. It will also describe the control methods to achieve high efficiency and power density using zero-voltage switching (ZVS) and zero-current switching (ZCS) techniques over the full range of the input voltage and the output load, providing comprehensive guidelines for the practical design. Finally, we demonstrate the convenience of the proposed design methods with a 65 W adaptor prototype achieving a peak efficiency of close to 95% and a minimum efficiency of 93.4% at full load over the range of the input voltage, as well as a world-class power density of 22 W/inch3 cased.


2017 ◽  
Vol 44 (3) ◽  
pp. 2857-2857
Author(s):  
Rajesh Thumma ◽  
Veera Venkata Subrahmanya Kumar Bhajana ◽  
Pavel Drabek ◽  
Martin Jara

2021 ◽  
Vol 9 (06) ◽  
pp. 663-672
Author(s):  
Anukriti Sharma ◽  
◽  
Navdeep Singh ◽  

This paper presents the performance analysis of proposed circuit of Single-Phase Reduced Order AC-AC Resonant Frequency Converter. AC-AC converter is minimized number of switches for multi-operation and resonant converter is converter work on the principle of ZCS (Zero Current Switching) and ZVS (Zero Voltage Switching) combining both topology, which provide better output with reduce THD and switching losses. A mathematical modeling is done for proper value of used parameters in converter. The output of converter is improved by applying Modulation technique in this converter we are using Trapezoidal Pulse Width Modulation (TPWM) for the better performance and control. THD of the converter is calculated by using MATLAB simulation software. MATALB simulation of AC –AC Resonate Frequency Converter is done by using MOSFET as switch.


Sign in / Sign up

Export Citation Format

Share Document