scholarly journals Effectiveness of Scenedesmus sp. Biomass Grow and Nutrients Removal from Liquid Phase of Digestates

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1432 ◽  
Author(s):  
Marta Kisielewska ◽  
Marcin Zieliński ◽  
Marcin Dębowski ◽  
Joanna Kazimierowicz ◽  
Zdzisława Romanowska-Duda ◽  
...  

One of the most important factors in determining the profitable production of microalgae biomass is the use of a cost effective growth medium that is rich in nutrients. The objective of the study was to determine the possibility of using digestates from anaerobic digestion of different feedstock mixtures as the media for Scenedesmus sp. cultivation. A different liquid digestate composition was obtained in terms of organic compounds, phosphorus, and nitrogen concentrations, depending on the substrates used in the anaerobic digestion. It was found that the highest biomass production was obtained when using digestate from anaerobic digestion of the feedstock mainly composed of microalgae biomass, which was characterized by low organic compounds concentration. In this case, the average biomass concentration reached 2382 mg total solids/L. A lower Scenedesmus sp. biomass yield was obtained using digestate from anaerobic digester processing feedstock based on maize silage and cattle menure. In the variants of the study, it was also found that the increase in the initial concentration of ammonia nitrogen in the growth medium up to 160 mg/L significantly reduced the growth of Scenedesmus sp. The results indicated the possibility of a high ammonia nitrogen and orthophosphates removal from anaerobic digestates by Scenedesmus sp. microalgae. Phosphorus concentration in the cultivation medium is a limiting factor for the growth of Scenedesmus sp., thus phosphorus supplementation should be considered when using liquid digestate as the culture medium. The optimization model indicated that the volume of liquid digestate that was used for preparing the cultivation medium, the initial concentration of organic compounds, and the initial concentration of ammonia nitrogen had a significant impact on the production of Scenedesmus sp. biomass.

Author(s):  
Marta Kisielewska ◽  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Joanna Kazimierowicz ◽  
Piera Quattrocelli ◽  
...  

AbstractThe aim of the study was to investigate the potential of microalgal cultivation on anaerobic liquid digestate as a growth medium. The two methods of liquid digestate treatment including centrifugation and distillation and the two algal strains (Chlorella vulgaris and Arthrospira platensis) were compared. Additionally, the volume of the liquid digestate used to prepare the culture medium constituted from 10 to 50% of the medium volume. The study demonstrated that the highest C. vulgaris and A. platensis biomass productions of 2490 mg TS/L and 2990 mg/L, respectively, were obtained by adding 50% of distilled digestate to a growth medium. Regarding centrifuged liquid digestate, only 10% dilution was required to obtain the maximum final biomass concentration. A. platensis removed 81.1% and 66.4% of the total nitrogen from medium prepared on distilled and centrifuged digestate, respectively, while C. vulgaris ensured 64.1% and 47.1% of removal, respectively. The phosphorus removal from both culture media was higher than 94.2% with A. platensis, while it was 70.4% from distilled and 87.4% from centrifuged media with C. vulgaris. The study confirmed a great potential of microalgal biomass production on anaerobic liquid digestate with a high treatment efficiency of digestate.


1992 ◽  
Vol 27 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Sonia Paulino Mattos ◽  
Irene Guimarães Altafin ◽  
Hélio José de Freitas ◽  
Cristine Gobbato Brandão Cavalcanti ◽  
Vera Regina Estuqui Alves

Abstract Built in 1959, Lake Paranoá, in Brasilia, Brazil, has been undergoing an accelerated process of nutrient enrichment, due to inputs of inadequately treated raw sewage, generated by a population of 600,000 inhabitants. Consequently, it shows high nutrient content (40 µg/L of total phosphorus and 1800 µg/L of total nitrogen), low transparency (0.65 m) and high levels of chlorophyll a (65 µg/L), represented mainly by Cylindrospermopsis raciborskii and sporadic bloom of Microcystis aeruginosa, which is being combatted with copper sulphate. With the absence of seasonality and a vertical distribution which is not very evident, the horizontal pattern assumes great importance in this reservoir, in which five compartments stand out. Based on this segmentation and on the identification of the total phosphorus parameter as the limiting factor for algal growth, mathematical models were developed which demonstrate the need for advanced treatment of all the sewage produced in its drainage basin. With this, it is expected that a process of restoration will be initiated, with a decline in total phosphorus concentration to readings below 25 µg/L. Additional measures are proposed to accelerate this process.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 86
Author(s):  
Abdel-Moety Salama ◽  
Ahmed Ezzat ◽  
Hassan El-Ramady ◽  
Shamel M. Alam-Eldein ◽  
Sameh Okba ◽  
...  

Adequate chill is of great importance for successful production of deciduous fruit trees. However, temperate fruit trees grown under tropical and subtropical regions may face insufficient winter chill, which has a crucial role in dormancy and productivity. The objective of this review is to discuss the challenges for dormancy and chilling requirements of temperate fruit trees, especially in warm winter regions, under climate change conditions. After defining climate change and dormancy, the effects of climate change on various parameters of temperate fruit trees are described. Then, dormancy breaking chemicals and organic compounds, as well as some aspects of the mechanism of dormancy breaking, are demonstrated. After this, the relationships between dormancy and chilling requirements are delineated and challenging aspects of chilling requirements in climate change conditions and in warm winter environments are demonstrated. Experts have sought to develop models for estimating chilling requirements and dormancy breaking in order to improve the adaption of temperate fruit trees under tropical and subtropical environments. Some of these models and their uses are described in the final section of this review. In conclusion, global warming has led to chill deficit during winter, which may become a limiting factor in the near future for the growth of temperate fruit trees in the tropics and subtropics. With the increasing rate of climate change, improvements in some managing tools (e.g., discovering new, more effective dormancy breaking organic compounds; breeding new, climate-smart cultivars in order to solve problems associated with dormancy and chilling requirements; and improving dormancy and chilling forecasting models) have the potential to solve the challenges of dormancy and chilling requirements for temperate fruit tree production in warm winter fruit tree growing regions.


2001 ◽  
Vol 44 (4) ◽  
pp. 109-116 ◽  
Author(s):  
A. Bonmatí ◽  
X. Flotats ◽  
L. Mateu ◽  
E. Campos

Feasibility of anaerobic digestion of pig slurry is dependent, among other factors, on the biogas production rate, which is low compared with other organic wastes, and on the profitable uses of surplus thermal energy produced, a limiting factor in warm geographical areas. The objectives of this work are determining whether low temperature thermal pretreatment (<90°C) improves pig slurry anaerobic digestion, and determining whether organic matter degradation during the thermal pretreatment is due to thermal phenomena (80°C) or to enzymatic ones (60°C). The thermal degradation tests showed that hydrolysis occurring during the thermal pretreatment is due to thermal phenomena. The increase in soluble substances were significantly larger at 80°C than at 60°C (both during 3 h). Two types of slurry were used in the batch anaerobic digestion tests. The effect of thermal pretreatment differed with the type of slurry: it was positive with almost non-degraded slurries containing low NH4+-N concentration, and negative (inhibition of the anaerobic digestion process) when using degraded slurries with high NH4+-N content.


2014 ◽  
Vol 529 ◽  
pp. 22-25 ◽  
Author(s):  
Li Wei Xie ◽  
Ze Long Xu ◽  
Yan Hua Huang ◽  
Shuang Cao ◽  
Zong Qiang Zhu ◽  
...  

Adsorption of ammonia nitrogen from aqueous solution onto the bagasse adsorbent has been investigated to evaluate the effects of Adsorbent dose, initial NH4+-N concentration, and pH on the removal systematically. With increasing initial concentration, the amount of ammonia nitrogen sorbed onto the adsorbent increased until it gradually decreased due to the initial concentration exceed 50 mg·L-1, and the maximum adsorption capacity was observed for the sample to be 1.31 mg·g-1 at the initial concentration of 30 mg·L-1, and the corresponding removal rates decreased from 94.01 to 3.89%, with increase in initial concentration from 5 to 100 mg·L-1. Adsorption capacities decreased from 6.04 to 0.49 mg·g-1 with increasing adsorbent dose from 0.1 to 1.5g. What’s more, under alkaline condition, the removal efficiency of ammonia nitrogen from aqueous solution onto the samples were superior to that under acidity and neutrality condition.


Bioengineered ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 502-509
Author(s):  
Anette T. Jansson ◽  
Regina J. Patinvoh ◽  
Mohammad J. Taherzadeh ◽  
Ilona Sárvári Horváth

Anaerobe ◽  
2019 ◽  
Vol 59 ◽  
pp. 92-99 ◽  
Author(s):  
Jiachen Sun ◽  
Zifu Li ◽  
Xiaoqin Zhou ◽  
Xuemei Wang ◽  
Ting Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document