scholarly journals A Methodology for Assembling Future Weather Files Including Heatwaves for Building Thermal Simulations from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) Climate Data

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3424 ◽  
Author(s):  
Anaïs Machard ◽  
Christian Inard ◽  
Jean-Marie Alessandrini ◽  
Charles Pelé ◽  
Jacques Ribéron

With increasing mean and extreme temperatures due to climate change, it becomes necessary to use—not only future typical conditions—but future heatwaves in building thermal simulations as well. Future typical weather files are widespread, but few researchers have put together methodologies to reproduce future extreme conditions. Furthermore, climate uncertainties need to be considered and it is often difficult due to the lack of data accessibility. In this article, we propose a methodology to re-assemble future weather files—ready-to-use for building simulations—using data from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) dynamically downscaled regional climate multi-year projections. It is the first time that this database is used to assemble weather files for building simulations because of its recent availability. Two types of future weather files are produced: typical weather years (TWY) and heatwave events (HWE). Combined together, they can be used to fully assess building resilience to overheating in future climate conditions. A case study building in Paris is modelled to compare the impact of the different weather files on the indoor operative temperature of the building. The results confirm that it is better to use multiple types of future weather files, climate models, and or scenarios to fully grasp climate projection uncertainties.

2020 ◽  
Author(s):  
Peter Huszar ◽  
Jan Karlický ◽  
Jana Ďoubalová ◽  
Tereza Nováková ◽  
Kateřina Šindelářová ◽  
...  

Abstract. This paper deals with the urban land-surface impact (i.e. the urban canopy meteorological forcing; UCMF) on extreme air pollution for selected central European cities for present-day climate conditions (2015–2016) using three regional climate-chemistry models: the regional climate models RegCM and WRF-Chem (its meteorological part), the chemistry transport model CAMx coupled to either RegCM and WRF and the chemical component of WRF-Chem. Most of the studies focused on the change of average conditions or only on a selected winter and summer air pollution episode. Here we extend these studies by focusing on long term extreme air pollution levels by looking at not only the change of average values but also their high (and low) percentile values and we combine the analysis with investigating selected high pollution episodes too. As extreme air pollution is often linked to extreme values of meteorological variables (e.g. low planetary boundary layer height, low winds, high temperatures), the extreme meteorological modifications will be analyzed too. The validation of model results shows reasonable model performance for regional scale temperature and precipitation. Ozone is overestimated by about 10–20 μg m−3, on the other hand, extreme summertime ozone values are underestimated by all models. Modeled nitrogen dioxide (NO2) concentrations are well correlated with observations, but results are marked with a systematic underestimation up to 20 μg m−3. PM2.5 (particles with diameter 


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2007 ◽  
Vol 88 (3) ◽  
pp. 375-384 ◽  
Author(s):  
E. S. Takle ◽  
J. Roads ◽  
B. Rockel ◽  
W. J. Gutowski ◽  
R. W. Arritt ◽  
...  

A new approach, called transferability intercomparisons, is described for advancing both understanding and modeling of the global water cycle and energy budget. Under this approach, individual regional climate models perform simulations with all modeling parameters and parameterizations held constant over a specific period on several prescribed domains representing different climatic regions. The transferability framework goes beyond previous regional climate model intercomparisons to provide a global method for testing and improving model parameterizations by constraining the simulations within analyzed boundaries for several domains. Transferability intercomparisons expose the limits of our current regional modeling capacity by examining model accuracy on a wide range of climate conditions and realizations. Intercomparison of these individual model experiments provides a means for evaluating strengths and weaknesses of models outside their “home domains” (domain of development and testing). Reference sites that are conducting coordinated measurements under the continental-scale experiments under the Global Energy and Water Cycle Experiment (GEWEX) Hydrometeorology Panel provide data for evaluation of model abilities to simulate specific features of the water and energy cycles. A systematic intercomparison across models and domains more clearly exposes collective biases in the modeling process. By isolating particular regions and processes, regional model transferability intercomparisons can more effectively explore the spatial and temporal heterogeneity of predictability. A general improvement of model ability to simulate diverse climates will provide more confidence that models used for future climate scenarios might be able to simulate conditions on a particular domain that are beyond the range of previously observed climates.


Author(s):  
Ivo Machar ◽  
Marián Halás ◽  
Zdeněk Opršal

Regional climate changes impacts induce vegetation zones shift to higher altitudes in temperate landscape. This paper deals with applying of regional biogeography model of climate conditions for vegetation zones in Czechia to doctoral programme Regional Geography in Palacky University Olomouc. The model is based on general knowledge of landscape vegetation zonation. Climate data for model come from predicted validated climate database under RCP8.5 scenario since 2100. Ecological data are included in the Biogeography Register database (geobiocoenological data related to landscape for cadastral areas of the Czech Republic). Mathematical principles of modelling are based on set of software solutions with GIS. Students use the model in the frame of the course “Special Approaches to Landscape Research” not only for regional scenarios climate change impacts in landscape scale, but also for assessment of climate conditions for growing capability of agricultural crops or forest trees under climate change on regional level.


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Francesca Marsili

<p>As consequence of global warming extreme weather events might become more frequent and severe across the globe. The evaluation of the impact of climate change on extremes is then a crucial issue for the resilience of infrastructures and buildings and is a key challenge for adaptation planning. In this paper, a suitable procedure for the estimation of future trends of climatic actions is presented starting from the output of regional climate models and taking into account the uncertainty in the model itself. In particular, the influence of climate change on ground snow loads is discussed in detail and the typical uncertainty range is determined applying an innovative algorithm for weather generation. Considering different greenhouse gasses emission scenarios, some results are presented for the Italian Mediterranean region proving the ability of the method to define factors of change for climate extremes also allowing a sound estimate of the uncertainty range associated with different models.</p>


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

&lt;p&gt;Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2&amp;#176;C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.&lt;/p&gt;


2021 ◽  
Author(s):  
Blanka Bartok

&lt;p&gt;As solar energy share is showing a significant growth in the European electricity generation system, assessments regarding long-term variation of this variable related to climate change are becoming more and more relevant for this sector. Several studies analysed the impact of climate change on the solar energy sector in Europe (Jerez et al, 2015) finding light impact (-14%; +2%) in terms of mean surface solar radiation. The present study focuses on extreme values, namely on the distribution of low surface solar radiation (overcast situation) and high surface solar radiation (clear sky situation), since the frequencies of these situations have high impact on electricity generation.&lt;/p&gt;&lt;p&gt;The study considers 11 high-resolution (0.11 deg) bias-corrected climate projections from the EURO-CORDEX ensemble with 5 Global Climate Models (GCMs) downscaled by 6 Regional Climate Models (RCMs).&lt;/p&gt;&lt;p&gt;Changes in extreme surface solar radiation frequencies show different regional patterns over Europe.&lt;/p&gt;&lt;p&gt;The study also includes a case study determining the changes in solar power generation induced by the extreme situations.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Jerez et al (2015): The impact of climate change on photovoltaic power generation in Europe, Nature Communications 6(1):10014, 10.1038/ncomms10014&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2019 ◽  
Author(s):  
Minchao Wu ◽  
Grigory Nikulin ◽  
Erik Kjellström ◽  
Danijel Belušić ◽  
Colin Jones ◽  
...  

Abstract. We investigate the impact of model formulation and horizontal resolution on the ability of Regional Climate Models (RCMs) to simulate precipitation in Africa. Two RCMs – SMHI-RCA4 and HCLIM38-ALADIN are utilized for downscaling the ERA-Interim reanalysis over Africa at four different resolutions: 25, 50, 100 and 200 km. Additionally to the two RCMs, two different configurations of the same RCA4 are used. Contrasting different RCMs, configurations and resolutions it is found that model formulation has the primary control over many aspects of the precipitation climatology in Africa. Patterns of spatial biases in seasonal mean precipitation are mostly defined by model formulation while the magnitude of the biases is controlled by resolution. In a similar way, the phase of the diurnal cycle is completely controlled by model formulation (convection scheme) while its amplitude is a function of resolution. Although higher resolution in many cases leads to smaller biases in the time mean climate, the impact of higher resolution is mixed. An improvement in one region/season (e.g. reduction of dry biases) often corresponds to a deterioration in another region/season (e.g. amplification of wet biases). The experiments confirm a pronounced and well known impact of higher resolution – a more realistic distribution of daily precipitation. Even if the time-mean climate is not always greatly sensitive to resolution, what the time-mean climate is made up of, higher order statistics, is sensitive. Therefore, the realism of the simulated precipitation increases as resolution increases. Our results show that improvements in the ability of RCMs to simulate precipitation in Africa compared to their driving reanalysis in many cases are simply related to model formulation and not necessarily to higher resolution. Such model formulation related improvements are strongly model dependent and in general cannot be considered as an added value of downscaling.


2018 ◽  
Author(s):  
Sophie Bastin ◽  
Philippe Drobinski ◽  
Marjolaine Chiriaco ◽  
Olivier Bock ◽  
Romain Roehrig ◽  
...  

Abstract. This work uses a network of GPS stations over Europe from which a homogenised integrated water vapor (IWV) dataset has been retrieved, completed with colocated temperature and precipitation measurements over specific stations to i) estimate the biases of six regional climate models over Europe in terms of humidity; ii) understand their origins; iii) and finally assess the impact of these biases on the frequency of occurrence of precipitation. The evaluated simulations have been performed in the framework of HYMEX/Med-CORDEX programs and cover the Mediterranean area and part of Europe at horizontal resolutions of 50 to 12 km. The analysis shows that models tend to overestimate the low values of IWV and the use of the nudging technique reduces the differences between GPS and simulated IWV. Results suggest that physics of models mostly explain the mean biases, while dynamics affects the variability. The land surface/atmosphere exchanges affect the estimation of IWV over most part of Europe, especially in summer. The limitations of the models to represent these processes explain part of their baises in IWV. However, models correctly simulate the dependance between IWV and temperature, and specifically the deviation that this relationship experiences regarding the Clausius-Clapeyron law after a critical value of temperature (Tbreak). The high spatial variability of Tbreak indicates that it has a strong dependence on local processes which drive the local humidity sources. This explains why the maximum values of IWV are not necessarely observed over warmer area, that are often dry area. Finally, it is shown over SIRTA observatory (near Paris) that the frequency of occurrence of light precipitation is strongly conditioned by the biases in IWV and by the precision of the models to reproduce the distribution of IWV as a function of the temperature. The results of the models indicate that a similar dependence occurs in other areas of Europe, especially where precipitation has a predominantly convective character. According to the observations, for each range of temperature, there is a critical value of IWV from which precipitation picks up. The critical values and the probability to exceed them are simulated with a bias that depends on the model. Those models which present too often light precipitation generally show lower critical values and higher probability to exceed them.


Sign in / Sign up

Export Citation Format

Share Document