scholarly journals Heat Transfer through Wire Cloth Micro Heat Exchanger

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3567
Author(s):  
Christian Walter ◽  
Sebastian Martens ◽  
Christian Zander ◽  
Carsten Mehring ◽  
Ulrich Nieken

The main objective of this study is to calculate and determine design parameters for a novel wire cloth micro heat exchanger. Wire cloth micro heat exchangers offer a range of promising applications in the chemical industry, plastics technology, the recycling industry and energy technology. We derived correlations to calculate the heat transfer rate, pressure drop and temperature distributions through the woven structure in order to design wire cloth heat exchangers for different applications. Computational Fluid Dynamics (CFD) simulations have been carried out to determine correlations for the dimensionless Euler and Nusselt numbers. Based on these correlations, we have developed a simplified model in which the correlations can be used to calculate temperature distributions and heat exchanger performance. This allows a wire cloth micro heat exchanger to be virtually designed for different applications.

Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.


2001 ◽  
Author(s):  
W. Jerry Bowman ◽  
Daniel Maynes

Abstract A review of the literature in the area of micro heat exchangers is presented to provide a concise overview of the recent advances in this field of study. The review is divided into six sections. The first section reviews research focused on understanding friction and heat transfer in microchannels. The second section deals with heat exchanger design, optimization and comparison studies. The third section deals with fabrication methods used for constructing micro heat exchangers. The fourth section reviews applications of micro heat exchangers. The last two sections of the paper deal with miscellaneous topics and other reviews on the subject. The total review focuses on advances made after the early 1990’s.


2013 ◽  
Vol 455 ◽  
pp. 330-334 ◽  
Author(s):  
Zhong Qian ◽  
Hai Min Wang

The research object is a micro heat exchanger (MHT) applied in chip cooling, a three dimensional simulation model is developed to analyze the transient heat transfer of the exchanger according to both exponential and periodic heat fluxes. Based on the computational results of the profiles of temperature and thermal stress, a comparison of performance of heat exchangers made of copper and silicon nitride compound is carried out. The results indicate that the capability of a copper heat exchanger is better than that of a silicon nitride exchanger under low load working condition due to the excellent thermal conductivity of copper. However, with large load fluctuations, the advantage of structure strength of compound makes the exchanger attractive since it has lower thermal stress and could guarantee a long-term stability. The efforts of this paper are referable for further research and development of micro heat exchangers.


2011 ◽  
Vol 354-355 ◽  
pp. 684-690 ◽  
Author(s):  
Yu Kun Lu ◽  
Kai Zhao ◽  
Xiao Gang Wang ◽  
Hai Feng Liu

The flow and heat transfer characteristics of a micro heat exchanger structure are studied with the method of contrasting experiment and Fluent numerical simulation. Considering the micro heat exchanger to meet the work requirements of conditions, there is some optimization of the structure redundancy. The optimal model of micro heat exchanger is obtained by the numerical simulation and comparative analysis on seven different kinds of micro heat exchangers.


Heat exchangers are the basic devices which are used in many areas wherever applications of heat flow occurs. Its usage varies from common domestic devices to mighty industrial applications. The performance of the heat exchanger shows a very important role for its utilization in many aspects. This performance is not dependent on the design parameters in a particular relationship hence experimental values for thermal performance are taken by utilizing three elliptical leaf strips in a tube and pipe heat exchanger. The three elliptical leaves used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 00 to 1800 with 100 intervals. The leaves are placed in the tube side with same orientation and opposite direction of flow and experimentation is conducted to obtain the values. Based on these datasets available a statistical tool is utilized known as GRNN for the comparison between these obtained experimental values & GRNN values. From this comparison the percentage of error between the values is identified as result.


Author(s):  
H. Zabiri ◽  
V. R. Radhakrishnan ◽  
M. Ramasamy ◽  
N. M. Ramli ◽  
V. Do Thanh ◽  
...  

The Crude Preheat Train (CPT) is a set of large heat exchangers which recover the waste heat from product streams back to preheat the crude oil. The overall heat transfer coefficient in these heat exchangers may be significantly reduced due to fouling. One of the major impacts of fouling in CPT operation is the reduced heat transfer efficiency. The objective of this paper is to develop a predictive model using statistical methods which can a priori predict the rate of the fouling and the decrease in heat transfer efficiency in a heat exchanger in a crude preheat train. This predictive model will then be integrated into a preventive maintenance diagnostic tool to plan the cleaning of the heat exchanger to remove the fouling and bring back the heat exchanger efficiency to their peak values. The fouling model was developed using historical plant operating data and is based on Neural Network. Results show that the predictive model is able to predict the shell and tube outlet temperatures with excellent accuracy, where the Root Mean Square Error (RMSE) obtained is less than 1%, correlation coefficient R2 of approximately 0.98 and Correct Directional Change (CDC) values of more than 90%. A preliminary case study shows promising indication that the predictive model may be integrated into a preventive maintenance scheduling for the heat exchanger cleaning.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


2021 ◽  
Vol 9 (1) ◽  
pp. 60-71
Author(s):  
Abeth Novria Sonjaya ◽  
Marhaenanto Marhaenanto ◽  
Mokhamad Eka Faiq ◽  
La Ode M Firman

The processed wood industry urgently needs a dryer to improve the quality of its production. One of the important components in a dryer is a heat exchanger. To support a durable heat transfer process, a superior material is needed. The aim of the study was to analyze the effectiveness of the application of cross-flow flat plate heat exchangers to be used in wood dryers and compare the materials used and simulate heat transfer on cross-flow flat plate heat exchangers using Computational Fluid Dynamic simulations. The results showed that there was a variation in the temperature out of dry air and gas on the flat plate heat exchanger and copper material had a better heat delivery by reaching the temperature out of dry air and gas on the flat plate type heat exchanger of successive cross flow and.   overall heat transfer coefficient value and the effectiveness value of the heat exchanger of the heat transfer characteristics that occur with the cross-flow flat plate type heat exchanger in copper material of 251.74725 W/K and 0.25.


2016 ◽  
Vol 37 (4) ◽  
pp. 137-159 ◽  
Author(s):  
Rafał Andrzejczyk ◽  
Tomasz Muszyński

Abstract The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.


Heat exchangers are prominent industrial applications where engineering science of heat transfer and Mass transfer occurs. It is a contrivance where transfer of energy occurs to get output in the form of energy transfer. This paper aims at finding a solution to improve the thermal performance in a heat exchanger by using passive method techniques. This experimental and numerical analysis deals with finding the temperature outlets of cold and hot fluid for different mass flow rates and also pressure drop in the tube and the annular side by adding an elliptical leaf strip in the pipe at various angles. The single elliptical leaf used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 0 0 to 1800 with 100 intervals. Since it’s not possible to find the heat transfer rates and pressure drops at every orientation of elliptical leaf so a generalized regression neural network (GRNN) prediction tool is used to get outputs with given inputs to avoid experimentation. GRNN is a statistical method of determining the relationship between dependent and independent variables. The values obtained from experimentation and GRNN nearly had precise values to each other. This analysis is a small step in regard with encomiastic approach for enhancement in performance of heat exchangers


Sign in / Sign up

Export Citation Format

Share Document