scholarly journals Reliability and Network Performance Enhancement by Reconfiguring Underground Distribution Systems

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4719
Author(s):  
Praveen Agrawal ◽  
Neeraj Kanwar ◽  
Nikhil Gupta ◽  
Khaleequr Rehman Niazi ◽  
Anil Swarnkar ◽  
...  

Contemporary distributions are now going to underground their overhead distribution lines due to techno-social reasons. Reliability and loss reduction are the two prime objectives for distribution system operation. Since failure rates of ungrounded cables are the function of Joules heating besides their physical lengths, the reliability evaluation of undergrounded distribution systems needs to be reviewed. This paper suggested a suitable modification in existing reliability indices in order to make them more appropriate for underground distribution systems. A multi-objective network reconfiguration problem is formulated to enhance the reliability and performance of distribution systems while duly addressing the variability and uncertainty in load demand and power generation from renewables. The application results on a standard test bench shift the paradigm of the well-known conflicting nature of reliability and network performance indices defined for overhead distribution systems.

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 131
Author(s):  
Jezabel D. Bianchotti ◽  
Melina Denardi ◽  
Mario Castro-Gama ◽  
Gabriel D. Puccini

Sectorization is an effective technique for reducing the complexities of analyzing and managing of water systems. The resulting sectors, called district metering areas (DMAs), are expected to meet some requirements and performance criteria such as minimum number of intervention, pressure uniformity, similarity of demands, water quality and number of districts. An efficient methodology to achieve all these requirements together and the proper choice of a criteria governing the sectorization is one of the open questions about optimal DMAs design. This question is addressed in this research by highlighting the advantages of three different criteria when applied to real-word water distribution networks (WDNs). To this, here it is presented a two-stage approach for optimal design of DMAs. The first stage, the clustering of the system, is based on a Louvain-type greedy algorithm for the generalized modularity maximization. The second stage, the physical dividing of the system, is stated as a two-objective optimization problem that utilises the SMOSA version of simulated annealing for multiobjective problems. One objective is the number of isolation valves whereas for the second objective three different performance indices (PIs) are analyzed and compared: (a) standard deviation, (b) Gini coefficient and (c) loss of resilience. The methodology is applied to two real case studies where the first two PIs are optimized to address similar demands among DMAs. The results demonstrate that the proposed method is effective for sectorization into independent DMAs with similar demands. Surprisingly, it found that for the real studied systems, loss of resilience achieves better performance for each district in terms of pressure uniformity and demand similarity than the other two specific performance criteria.


2021 ◽  
Vol 39 (4) ◽  
pp. 1198-1205
Author(s):  
J.N. Nweke ◽  
A.G. Gusau ◽  
L.M. Isah

A stable and reliable electric power supply system is a pre-requisite for the technological and economic growth of any nation. Nigeria's power supply has been experiencing incessant power interruptions caused by a failure in the distribution system. This paper developed a system planning approach as part of the key mitigation strategies for improved reliability and protection of the distribution network. The developed algorithm is tested using 33kV feeder supplying electricity to Kaura-Namoda, Zamfara State,  Nigeria. A customer-based reliability index was used as a tool to evaluate the reliability assessment of the feeder test system. The result showed that alternative 3 gives better results in terms of improvement of the system average interruption duration index (SAIDI), which in turn gives the minimum interrupted energy. Also, it is found that a greater number of sectionalizing switches do not give better results. It is very important to place the sectionalizing switches at a strategic location. If it is located at such points that will facilitate to sectionalize the faulty sections faster and to make the supply available to the unfaulty part of the network. Hence the utility company should apply this mitigation algorithm for system reliability improvement, depending on their needs and requirements. Thus, utilities can optimize network performance and better serve customers by adopting mitigation strategies in addressing trouble-prone areas to achieve a stable and reliable supply Keywords: distribution system; reliability; reliability indices; system performance evaluation; protection system; mitigation algorithms and sectionalizing switches 


SCITECH Nepal ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 1-7
Author(s):  
Avinash Khatri KC ◽  
Tika Ram Regmi

An electric distribution system plays an important role in achieving satisfactory power supply. The quality of power is measured by voltage stability and profile of voltage. The voltage profile is affected by the losses in distribution system. As the load is mostly inductive on the distribution system and requires large reactive power, most of the power quality problems can be resolved with requisite control of reactive power. Capacitors are often installed in distribution system for reactive power compensation. This paper presents two stage procedures to identify the location and size of capacitor bank. In the first stage, the load flow is carried out to find the losses of the system using sweep algorithm. In the next stage, different size of capacitors are initialized and placed in each possible candidate bus and again load flow for the system is carried out. The objective function of the cost incorporating capacitor cost and loss cost is formulated constrained with voltage limits. The capacitor with the minimum cost is selected as the optimized solution. The proposed procedure is applied to different standard test systems as 12-bus radial distribution systems. In addition, the proposed procedure is applied on a real distribution system, a section of Sallaghari Feeder of Thimi substation. The voltage drops and power loss before and after installing the capacitor were compared for the system under test in this work. The result showed better voltage profiles and power losses of the distribution system can be improved by using the proposed method and it can be a benefit to the distribution networks.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 679 ◽  
Author(s):  
Hosam Hittini ◽  
Atef Abdrabou ◽  
Liren Zhang

In this paper, a false data injection prevention protocol (FDIPP) for smart grid distribution systems is proposed. The protocol is designed to work over a novel hierarchical communication network architecture that matches the distribution system hierarchy and its vast number of entities. The proposed protocol guarantees both system and data integrity via preventing packet injection, duplication, alteration, and rogue node access. Therefore, it prevents service disruption or damaging power network assets due to drawing the wrong conclusions about the current operating status of the power grid. Moreover, the impact of the FDIPP protocol on communication network performance is studied using intensive computer simulations. The simulation study shows that the proposed communication architecture is scalable and meets the packet delay requirements of inter-substation communication as mandated by IEC 61850-90-1 with a minimal packet loss while the security overhead of FDIPP is taken into account.


2012 ◽  
Vol 220-223 ◽  
pp. 101-106
Author(s):  
Xing Wan ◽  
Xiao Li Zhang

Abstract: Scheduling plans of running a large, traditional power grid often distribute power resources in each small system. And they didn’t take the scope of scheduling operation within the power distribution system into consideration. With the trend separate transmission and distribution, the number of distributed generators that installed is growing rapidly. More and more micro-grid network composed of low-voltage distribution power network are formed. With effective regulation, this system can satisfy local load demand and support networking. The establishment of mechanisms such as AGC support services, with be vital to insure the power quality and reliability. Keywords: distributing power Micro-Grid DG AGC


Author(s):  
Subramanya Sarma S ◽  
V. Madhusudhan ◽  
V. Ganesh

<p>Reliability worth assessment is a primary concern in planning and designing of electrical distribution systems those operate in an economic manner with minimal interruption of electric supply to customer loads. Renewable energy sources (RES) based Distributed Generation (DG) units can be forecasted to penetrate in distribution networks due to advancement in their technology. The assessment of reliability worth of DG enhanced distribution networks is a relatively new research area. This paper proposes a methodology that can be used to analyze the reliability of active distribution systems (DG enhanced distribution system) and can be applied in preliminary planning studies to compute the reliability indices and statistics. The reliability assessment in this work is carried out with analytical approach applied on a test system and simulated results validate that installation of distributed generators can improve the distribution system reliability considerably.</p>


As an effective supplement to the centralized fossil fuel based traditional generation, Distributed Generation (DG) has become an effective alternative choice and has been rapidly increasing since past few years due to growing demand for electricity and the new policies of governing bodies for usage of green energy. In overall power system, distribution systems are more vulnerable to faults and reliability aspects of such systems becomes an important issue. With higher penetration of DG into the distribution network, it will be necessary to study the impact of such generation on the various aspects of distribution system. Thus, increase in rate of penetration DGs into the distribution system on one side and increased faults in distribution network on another side, will make the study of impact of DG integration on distribution system reliability an interesting topic of research. The present work focuses on evaluation of impacts of integration of such DGs on reliability of local distribution network, typically in an urban scenario By using the simulation method using DIgSILENT PowerFactory software, the impacts of integration of DG in terms of enhancement in distribution system reliability indices and reduction in system losses for different scenarios are studied and presented in this paper. Based on the simulation results obtained and after analysis of the distribution system, overall results are summarized by focusing on the installation of suitable capacity of DG and the location of DG which are important factors affecting the system losses and system reliability indices.


Author(s):  
Ganesh Kumar Sah ◽  
Laxman Poudel

Cost effective, Aesthetic and Reliable energy supply is the need of any mankind. In this study, economic analysis for replacement of 11 kV overhead distribution feeder by 11kV underground cable is done with reference to Koteshwor Feeder under Baneshwor Distribution and Consumers Service. The reliability indices like SAIDI, SAIFI, ENS etc. is performed by using DigSilentPowerFactory software. The reliability of overhead distribution system is evaluated by using real system data system and similarly, historical IEEE standard data is used for underground distribution system. The reliability indices are compared for both distribution systems. Result shows that interruption in the overhead system is more than underground distribution system, the energy not supplied to the customer by overhead distribution system is also more than underground distribution system. The replacement cost estimation is performed by using Nepal Electricity Authority (NEA) unit rate and KEI industries quoted price for NEA underground project. The B/C ratio and Present Worth value for the 25-year period of useful life shows that the replacement of the existing overhead distribution system by underground distribution system is financial suitable and can be payback by revenue save from the Energy Not Supply (ENS) lower value of underground distribution system than overhead distribution system. In order to get the continuous of supply, esthetic and public safety in electricity distribution field one may have to bear initially extra cost to use underground distribution systems which finally get payback. Thus, in case of densely populated city like Kathmandu, underground distribution system is reasonable requirement for continuous supply, esthetic and public safety in electricity distribution filed.


2021 ◽  
Vol 13 (23) ◽  
pp. 13201
Author(s):  
Mohammad Reza Mansouri ◽  
Mohsen Simab ◽  
Bahman Bahmani Firouzi

This paper presents an innovative instantaneous pricing scheme for optimal operation and improved reliability for distribution systems (DS). The purpose of the proposed program is to maximize the operator’s expected profit under various risk-taking conditions, such that the customers pay the minimum cost to supply energy. Using the previous information of the energy consumption for each customer, a customer baseline load (CBL) is defined; the energy price for consumption costs higher and lower than this level would be different. The proposed scheme calculates the difference between the baseline load and the consumption curve with the electricity market price instead of calculating the total consumption of the customers with the unstable price of the electricity market, which is uncertain. In the proposed tariff, the developed cost and load models are included in the distribution system operation problem, and the objective function is modeled as a mixed integer linear programming (MILP) problem. Also, the effect of demand response (DR) and elasticity on the load curve, the final profit of the distribution system operator, and payment risk and operation costs are examined. Since there are various uncertainties in the smart distribution grid, the calculations being time-consuming and volumetric is important in the evaluation of reliability indices. Thus, when computation volume can be decreased and computation speed can be increased, analytical reliability analysis methods can be used, as they were in the present work. Finally, the changes in the reliability indices were calculated for the ratio of the customers’ sensitivity to the price and the customers’ participation in the proposed tariff using an analytical method based on Monte Carlo simulation (MCS). The results showed the efficiency of the proposed method in increasing the operator profit, reducing the operation costs, and enhancing the reliability indices.


2022 ◽  
pp. 25-37
Author(s):  
Sanchari Deb ◽  
Sulabh Sachan

The growing concern about fossil energy exhaustion, air pollution, and ecological deprivation has made electric vehicles (EVs) a practical option in contrast to combustion engine-driven vehicles. In any case, driving extent uneasiness is one of the innate inadequacies related with EVs. Massive integration of EV charging load into the power system may be a threat to the distribution network. Spontaneous situation of charging stations in the distribution system and uncoordinated charging will augment the load demand thereby resulting in voltage instability, deterioration of reliability indices, harmonic distortions, and escalated power losses. This chapter will concentrate on breaking down the effect of EV chargers on the working parameters, for example, voltage dependability, unwavering quality, and force misfortune. The examination will be completed on standard test systems. The discoveries of the proposed part will evaluate the effect of EV charging load on the working parameters of the distribution system and help in proposing a framework for charging station planning.


Sign in / Sign up

Export Citation Format

Share Document