scholarly journals Numerical Simulation and Experimental Investigation of Temperature and Residual Stress Distributions in a Circular Patch Welded Structure

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5423 ◽  
Author(s):  
Mato Perić ◽  
Sandro Nižetić ◽  
Zdenko Tonković ◽  
Ivica Garašić ◽  
Ivan Horvat ◽  
...  

In this study, we performed a numerical simulation and experimental measurements on a steel circular patch welded structure to investigate the temperature and residual stress field distributions caused by the application of buried-arc welding technology. The temperature histories during the welding and subsequent cooling process were recorded for two locations, with the thermocouples mounted inside the plate close to the weld bead. On the upper surface of the welded model, the temperature-time changes during the cooling process were monitored using an infrared camera. The numerically calculated temperature values correlated well with the experimentally measured ones, while the maximum deviation of the measured and calculated temperatures was within 9%. Based on the numerical result analysis regarding circumferential and radial stresses after the completion of the welding process, it is concluded that both stresses are primarily tensile within the circular disk. Outside the disk, the circumferential stresses turn from tensile to compressive, while on the other hand the radial stresses disappear towards the ends of the plate.

2020 ◽  
Vol 26 (2) ◽  
pp. 41-44
Author(s):  
Libor Trško ◽  
Ján Lago ◽  
Michal Jambor ◽  
František Nový ◽  
Otakar Bokůvka ◽  
...  

AbstractHigh strength low alloy (HSLA) steels are a new generation of plain carbon steels with significantly improved mechanical properties while maintaining good weldability with common commercial techniques. Residual stress and microstructural analysis of welded HSLA Strenx 700 MC was carried out in this research. Results have shown that the welding process causes significant grain coarsening in the heat affected zone. The microstructural changes are also accompanied with creation of tensile residual stress field in the weld metal and heat affected zone, reaching up-to depth of 4 mm. Tensile residual stresses are well known for acceleration of fatigue crack initiation and together with coarse grains can lead to significant decrease of the fatigue properties of the welded structure.


2012 ◽  
Vol 462 ◽  
pp. 154-159
Author(s):  
Xiu Zhi Yang ◽  
Wan Jing Ding ◽  
Jin Yu Jiang ◽  
Xin Hua Xiao

Finite element software MSC.MARC was used to analyze the residual stress of high-strength low-alloy steel suffered twin-wire SAW. The numerical simulation of the residual stress field with different twin-wire spacing was conducted. The residual stress test results under twin-wire SAW at twin-wire of 50 mm welding were compared to the simulation results, which verified the numerical simulation. The results showed that in the single-channel and twin-wire welding, the largest welding residual stress of the joints is located near the weld toe. At certain wire distances (20-100 mm) in the twin-wire welding process, increasing distance only minimally reduces welding residual stress. Thus, the effects of residual stress on two-wire spacing have been neglected in studies on the twin-wire welding process,More studies should focus on the impact of the performance and forming of the weld joint.


2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


Author(s):  
Tao Mo ◽  
Jingqing Chen ◽  
Pengju Zhang ◽  
Wenqian Bai ◽  
Xiao Mu ◽  
...  

Ultrasonic impact treatment (UIT) is an effective method that has been widely applied in welding structure to improve the fatigue properties of materials. It combines mechanical impact and ultrasonic vibration to produce plastic deformation on the weld joints surface, which introduces beneficial compressive residual stress distribution. To evaluate the effect of UIT technology on alleviating the residual stress of welded joints, a novel numerical analysis method based on the inherent strain theory is proposed to simulate the stress superposition of welding and subsequent UIT process of 304 stainless steel. Meanwhile, the experiment according to the process was carried out to verify the simulation of residual stress values before and after UIT. By the results, optimization of UIT application could effectively reduce the residual stress concentration after welding process. Residual tensile stress of welded joints after UIT is transformed into residual compressive stress. UIT formed a residual compressive stress layer with a thickness of about 0.13 mm on the plate. The numerical simulation results are consistent with the experimental results. The work in this paper could provide theoretical basis and technical support for the reasonable evaluation of the ultrasonic impact on residual stress elimination and mechanical properties improvement of welded joints.


2016 ◽  
Vol 43 (8) ◽  
pp. 0802007
Author(s):  
汪静雪 Wang Jingxue ◽  
章艳 Zhang Yan ◽  
张兴权 Zhang Xingquan ◽  
戚晓利 Qi Xiaoli ◽  
裴善报 Pei Shanbao ◽  
...  

2013 ◽  
Vol 345 ◽  
pp. 312-315 ◽  
Author(s):  
Bing Han ◽  
Yan Hua Wang ◽  
Chang Liang Xu

Water-jet cavitation peening is a new technology for surface modification of metallic materials. Compress residual stress layer is induced by impact wave pressure in the submerged cavitating jets processing. Based on ANSYS/LS-DYNA finite element analysis software, residual stress field in the SAE1070 spring steel material surface induced by cavitate-jet water peening process is simulated, the magnitude and variation rules of the residual stress along the layer depth under different conditions is obtained. In order to verify the correctness of the numerical simulation, the size and distribution of residual stress by the X-ray diffraction method. The results show that the numerical simulation and experimental results are well consistent.


Author(s):  
Ali Mirzaee Sisan ◽  
Afshin Motarjemi

A numerical study was carried out to quantify the effect of a residual stress field on subsequent fracture behaviour of a girth welded pipe with an internal circumferential long crack when subjected to high applied strain loading. In order to introduce an initial residual stress field similar to a welding process in a pipe, a quenching process was numerically simulated and associated residual stress profiles were modified and mapped into the finite element (FE) models. A detailed comparison between the crack driving force for various cases with and without residual stress and weld strength mismatch was carried out for cases under a high plastic deformation regime. The BS7910 procedure was also used to predict crack driving forces using its current assumption of interaction of residual stress with primary loads. The results obtained from the FE analyses were compared with the BS7910 predictions.


2013 ◽  
Vol 433-435 ◽  
pp. 1898-1901
Author(s):  
Li Juan Cao ◽  
Shou Ju Li ◽  
Zi Chang Shangguan

Shot peening is a manufacturing process intended to give components the final shape and to introduce a compressive residual state of stress inside the material in order to increase fatigue life. The modeling and simulation of the residual stress field resulting from the shot peening process are proposed. The behaviour of the peened target material is supposed to be elastic plastic with bilinear characteristics. The results demonstrated the surface layer affected by compressive residual stresses is very thin and the peak is located on the surface.


2014 ◽  
Vol 996 ◽  
pp. 808-813
Author(s):  
Elias Merhy ◽  
Ngadia Taha Niane ◽  
Bastien Weber ◽  
Philippe Bristiel

Metal Active Gas (MAG) welding process of steel sheets generates, in the vicinity of the welding joint, the well-known Heat Affected Zone (HAZ) in which the material presents more microstructural defects compared to the original metal. Since high cycle fatigue is largely dependent on the material microstructure features, the HAZ is considered as the weakest zone under high cycle fatigue loading. In addition, the welding causes, in the Heat Affected Zone, irreversible plastic strains that induce important residual stress fields in this critical zone of the structure. Therefore, in order to properly predict the high cycle fatigue life time of the welded automotive components, it is of primordial importance to first identify and then consider, if necessary, the welding induced residual stress field in the structure modeling. In this work, it is found that residual stresses have non-negligible impact on high cycle fatigue lifetime, while its effect is minor in the low cycle fatigue domain.


2012 ◽  
Vol 562-564 ◽  
pp. 729-732 ◽  
Author(s):  
Yu Wen Li ◽  
Fu Xing Wang

Aluminum as solder, in the flat welding process, the temperature field and the residual stress field distribution was the main problem of the study; According to the actual situation of the welding process, using the direct loading temperature method and the indirect loading temperature method , the main path of temperature field distribution curves and the residual stress field distribution were gained by 2D numerical simulation respectively; Through comparison, the indirect loading method can get more accuracy of residual stress field distribution than that of the direct loading temperature method; The above methods were useful in practical production.


Sign in / Sign up

Export Citation Format

Share Document