scholarly journals Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6291
Author(s):  
Jolanta Batog ◽  
Jakub Frankowski ◽  
Aleksandra Wawro ◽  
Agnieszka Łacka

In recent years, there has been a dynamic development of alternative energy sources and the use of plant biomass for the production of bioenergy is one of the possibilities of improving the energy mix. Therefore, it is worth reaching for new, less popular and perspective solutions, which certainly include sorghum, a drought-resistant plant with a high yielding potential and various applications in the bioeconomy. The aim of the research was to determine the amount of bioethanol obtained from the biomass of three sorghum varieties (Rona 1, Santos, Sucrosorgo 506) grown in the main and second crop for three years in the temperate climate typical of Central and Eastern Europe. The yields of sorghum cultivars grown as main and second crops, chemical components of sorghum biomass (cellulose, hemicellulose, lignin) and the amount of ethanol per a ton of dry matter of straw and ethanol yield per hectare were evaluated. The experiments and research carried out show, especially in the second year, that the Sucrosorgo 506 variety can be recommended for the cultivation of biomass and its use for the production of lignocellulosic ethanol is effective, both in main and second crop cultivation. The discussed results were confirmed by detailed statistical analysis, incl. principal component analysis (PCA) and cluster analysis. To sum up, the production of bioethanol from sorghum biomass is possible in temperate climate and it does not compete with the production of food due to the possibility of growing sorghum after rye.

2021 ◽  
Author(s):  
Kelly Yinching Lam ◽  
Yinghao Wang ◽  
Tszking Lam ◽  
Chuenfai Ku ◽  
Wingping Yeung ◽  
...  

Abstract BackgroundLeonuri Herba (Yimucao) is a very commonly Chinese herbs for treating menstrual and maternal diseases for thousands of years in China. However, the herb collected in different origins was easily found in the markets which induce the unstable quality for clinic use. In this study, a comprehensive strategy of using multiple chromatographic analysis and chemometric analysis was firstly investigated for chemical discrimination of Leonuri Herba from different geographical origins.MethodsUHPLC-QTOF-MS/MS was applied to identify the peaks of Leonuri Herba and chemical fingerprints were established in 30 batches from different geographical origins. Meanwhile, dissimilarities of chemical compositions among different origins were further investigated by principal component analysis and cluster analysis.ResultsA total of 49 chromatographic peaks of Leonuri Herba were unequivocally or tentatively identified by UHPLC-QTOF-MS/MS. Leonuri Herba were classified into four categories, and eight major compounds detected could be used as chemical markers for discrimination. Also, the eight components, including leonurine, 4',5-dihydroxy-7-methoxyflavone, rutin, hyperoside, apigenin, quercetin, kaempferol and salicylic acid, were simultaneously quantified using the extracting ion mode of UHPLC-QTOF-MS/MS.ConclusionThis systematic information could ensure Leonuri Herba with well-controlled quality and safe use in clinic. This study could also provide a research model for further study of other Chinese Materia Medica.


2019 ◽  
pp. 403-411
Author(s):  
Olga Babich ◽  
Olga Krieger ◽  
Evgeny Chupakhin ◽  
Oksana Kozlova

The increasing shortage of fossil hydrocarbon fuel dictates the need to search for and develop alternative energy sources, including plant biomass. This paper is devoted to the study of the Miscanthus plants biomass potential and the analysis of technologies of its processing into products targeted at bioenergy, chemistry, and microbiology. Miscanthus is a promising renewable raw material to replace wood raw materials for the production of chemical, fuel, energy, and microbiological industries. Miscanthus is characterised by highly productive (up to 40 tons per one hectare of dry matter) C4-photosynthesis. Dry Miscanthus contains 47.1–49.7% carbon, 5.38–5.92% hydrogen, and 41.4–44.6% oxygen. The mineral composition includes K, Cl, N and S, which influence the processes occurring during biomass combustion. The total amount of extractives per dry substance lies in the range of 0.3–2.2 % for different extraction reagents. Miscanthus has optimal properties as an energy source. Miscanthus × giganteus pellets showed the energy value of about 29 kJ/g. For the bioconversion of plants into bioethanol, it is advisable to carry out simultaneous saccharification and fermentation, thus reducing the duration of process steps and energy costs. Miscanthus cellulose is of high quality and can be used for the synthesis of new products. Further research will focus on the selection of rational parameters for processing miscanthus biomass into products with improved physical and chemical characteristics: bioethanol, pellets, industrial cellulose, bacterial cellulose, carbohydrate substrate.


Author(s):  
Olumuyiwa Adeyemo ◽  
Mohammed Ja'afaru ◽  
Sani Abdulkadir ◽  
Aishatu Salihu

Due to increase in demand for energy as a result of human population explosion, industrialization and environmental hazards posed by fossil fuels, there is a need to source for alternative energy sources that are cheaper and environmental friendly. Three different lignocellulosic biomasses were studied for their suitability for bioethanol production. Fungi and yeasts were isolated using serial dilution and spread plate methods. Identification of both fungi and yeasts was done using their cultural and microscopy characteristics. Saccharification of the pre-treated biomass was done with both crude cellulase and mycelia inoculant. Bioethanol was produced using batch culture fermentation. Ethanol produced was detected using spectrometric method and quantified using High Performance Liquid Chromatography (HPLC). The effects of substrate concentration, pH and temperature on ethanol yield were optimized. Fifty fungal isolates were obtained from soil collected. Six yeasts, all Kluyveromyces species fermented three sugars to ethanol with isolate Kluyveromyces sp.Y2 having the shortest time. It was selected for fermentation. Aspergillus niger S48 had highest cellulase activity measured in a zone of hydrolysis of 26.0 mm. It had the highest glucanase activity, endoglucanase (0.462 U/mL) and exoglucanase (0.431 U/mL). The outcome of this study indicated that crude cellulase produced by Aspergillus niger S48 hydrolyzed the pre-treated rice chaff with 1.07 mg/mL of fermentable sugars higher than 0.87 mg/mL when the mycelia of the fungus was inoculated to pretreated rice chaff for hydrolysis. Ethanol was optimally produced at 12 % substrate concentration using rice chaff, at a temperature of 35 °C and pH 5.0.


2019 ◽  
Vol 2 (1) ◽  
pp. 8-16 ◽  
Author(s):  
P. A. Khlyupin ◽  
G. N. Ispulaeva

Introduction: The co-authors provide an overview of the main types of wind turbines and power generators installed into wind energy devices, as well as advanced technological solutions. The co-authors have identified the principal strengths and weaknesses of existing wind power generators, if applied as alternative energy sources. The co-authors have proven the need to develop an algorithm for the selection of a wind generator-based autonomous power supply system in the course of designing windmill farms in Russia. Methods: The co-authors have analyzed several types of wind turbines and power generators. Results and discussions: The algorithm for the selection of a wind generator-based autonomous power supply system is presented as a first approximation. Conclusion: The emerging algorithm enables designers to develop an effective wind generator-based autonomous power supply system.


2014 ◽  
Vol 10 (1) ◽  
pp. 35-51
Author(s):  
I. Czupy

Concerns about climate change and fossil fuel shortages are encouraging interest in stumps, as alternative energy sources. Stumps are an almost unused resource in the context of bio fuels. Stump harvesting signifies an intensification of forest management compared with conventional stem-only or above-ground biomass-only harvesting. There are many benefits of stump harvesting. These include: the production of wood fuel, fossil fuel substitution, and improved soil preparation.Removing tree trunks in Hungary has been going on according to the principle of stump extraction, which means stumps are removed by grabbing technology. Experiments have been carried out to reduce the extraction force. In the Great Hungarian Lowland, where large areas require the operation implementation, stump extraction is done by special, hydraulic driven baggers equipped with a special bucket. During operation of the equipment, we carried out measurements of the extraction force and the time requirement. The experiments are designed to carry out the measurements with different soils and different tree species. According to our proposal the suitable force and torque required to remove stumps can be significantly reduced if before the lifting the soil — root connection is loosened. One of the possible ways to implement this task is the use of vibration. Since relatively great vibration power and wide domain of frequency are necessary, therefore we prepared the loosening machinery elements of alternating-current hydraulics system. Based on constructions variants we created a tractor-mounted experimental alternating-current hydraulic stump-loosening machine. It was designed with the ability to produce horizontal vibration in order to loosen stumps.


2020 ◽  
Vol 16 (5) ◽  
pp. 885-904
Author(s):  
M.E. Frai

Subject. The article discusses limited sources of energy nowadays and an ongoing survey of new ones. I focus on fuel and energy complexes worldwide and in Russia. Objectives. The study is to analyze the future use of alternative energy sources in the fuel and energy complex nationwide and worldwide. I review the existing energy sources of the fuel and energy complex in the global and regional markets, specifically the alternative ones. Methods. The study relies upon methods of statistics, analysis and systems approach. Results. The article demonstrates that the fuel and energy complex strongly depends on the current situation in the energy resource market, which is difficult to forecast. If we continue relying on traditional energy resources, we get exposed to some risks affecting the sustainable development of the economy. Russia should diversify the power engineering sector by developing alternative energy sources. The article sets forth the economic rationale for alternative sources and key steps Russia shall make. Conclusions and Relevance. Considering the current situation in the energy balance, alternative energy is what any advanced society seeks for, being supported by manufacturers, governmental institutions, and researchers, though low profitability and high infrastructure costs impede its development. In Russia, these challenges are even more palpable. However, even now Russia is able to find alternative energy solutions. In addition to advantages of alternative energy, which is globally proclaimed, they will also help Russia diversify and update the economic system.


Author(s):  
Firmansyah A. ◽  
Winingsih W. ◽  
Soebara Y S

Analysis of natural product remain challenging issues for analytical chemist, since natural products are complicated system of mixture. The most popular methods of choice used for quality control of raw material and finished product are high performance liquid chromatography (HPLC), gas chromatography (GC) and mass spectrometry (MS). The utilization of FTIR-ATR (Fourier Transform Infrared-Attenuated Total Reflectance) method in natural product analysis is still limited. This study attempts to expand the use of FTIR spectroscopy in authenticating Indonesian coffee powder.The coffee samples studied were taken from nine regions in Indonesia, namely Aceh Gayo, Flores, Kintamani, Mandheling, Papua, Sidikalang, Toraja, Kerinci and Lampung.The samples in the form of coffee bean from various regions were powdered . The next step conducted was to determine the spectrum using the FTIR-ATR (Attenuated Total Reflectance) using ZnSe crystal of 8000 resolution. Spectrum samples, then, were analyzed using chemometrics. The utilized chemometric model was the principal component analysis (PCA) and cluster analysis (CA). Based on the chemometric analysis, there are similarities between Aceh Gayo coffee with Toraja coffee, Mandailing coffee, Kintamani coffee and Flores coffee. Sidikalang coffee has a similarity to Flores coffee; Papua coffee has a similarity to Sidikalang coffee; Lampung coffee has a similarity to Sidikalang coffee, while Kerinci coffee has a similarity to Papua coffee.


Sign in / Sign up

Export Citation Format

Share Document