scholarly journals Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 371
Author(s):  
Duk-Gam Woo ◽  
Sang Hyeon Kim ◽  
Tae Han Kim

To help mitigate the effects of global warming and fossil fuel depletion caused by human use of fossil fuels, solid fuel pellets were developed from a mixture of spent coffee grounds (SCG) and pine sawdust (PS). The feasibility of SCG-PS pellets as biofuel was also verified by evaluating its fuel quality. An increase in the proportion of SCG in the pellet led to an increase in its calorific value, owing to the high C, H, and oil contents, and increases in the ash and S contents, owing to the high S content in SCG. Analysis of the feedstock particle size distribution revealed that SCG particles are smaller than PS particles; thus, the durability of the pellet decreases as the proportion of SCG increases. Accordingly, the samples with higher SCG proportions (70 and 90 wt.%) did not meet the moisture content standards for biomass solid refuse fuel (bio-SRF) set by the Korea Ministry of Environment, whereas the samples with lower SCG proportions did. In particular, CP10 (10 wt.% SCG + 90 wt.% PS) satisfied the quality standards of Grade 1 wood pellets, demonstrating the feasibility of using SCG as a raw material for biofuel pellet production.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1235 ◽  
Author(s):  
Radovan Nosek ◽  
Maw Maw Tun ◽  
Dagmar Juchelkova

Nowadays it is important to limit the use and combustion of fossil fuels such as oil and coal. There is a need to create environmentally acceptable projects that can reduce or even stop greenhouse gas emissions. In this article, we dealt with the objectives of energy policy with regard to environmental protection, waste utilization, and conservation of natural resources. The main objective of the research was to assess the possibility of the use of spent coffee grounds (SCG) as fuel. As a part of the solution, the processing of coffee waste in the form of pellets, analysis of calorific value and combustion in the boiler were proposed. The experiments were done with four samples of pellets. These samples were made from a mixture of wood sawdust and spent coffee grounds with ratio 30:70 (wood sawdust: spent coffee grounds), 40:60, 50:50 and 100% of spent coffee grounds. The calorific values were compared with wood sawdust pellets (17.15 MJ.kg−1) and the best lower calorific value of 21.08 MJ.kg−1 was measured for 100% of spent coffee grounds. This sample did not achieve the desired performance during the combustion in the boiler due to the low strength of the sample.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4667
Author(s):  
Sunyong Park ◽  
Hui-Rim Jeong ◽  
Yun-A Shin ◽  
Seok-Jun Kim ◽  
Young-Min Ju ◽  
...  

Agricultural by-products have several disadvantages as fuel, such as low calorific values and high ash contents. To address these disadvantages, this study examined the mixing of agricultural by-products and spent coffee grounds, for use as a solid fuel, and the improvement of fuel characteristics through torrefaction. Pepper stems and spent coffee grounds were first dried to moisture contents of <15% and then combined, with mixing ratios varying from 9:1 to 6:4. Fuel pellets were produced from these mixtures using a commercial pelletiser, evaluated against various standards, and classified as grade A, B, or Bio-SRF. The optimal ratio of pepper stems to spent coffee grounds was determined to be 8:2. The pellets were torrefied to improve their fuel characteristics. Different torrefaction temperatures improved the mass yields of the pellets to between 50.87% and 88.27%. The calorific value increased from 19.9% to 26.8% at 290 °C. The optimal torrefaction temperature for coffee ground pellets was 230 °C, while for other pellets, it was 250 °C. This study provides basic information on the potential enhancement of agricultural by-products for fuel applications.


2017 ◽  
Author(s):  
◽  
Jihyun Park

Annually, more than 6 million tons of spent coffee grounds (SCG) are generated worldwide. The present study explores the possible use of spent coffee grounds as the raw materials for cosmetics industry. The main objective of this project are to investigate the chemical profiles and identify the bioactive compounds for cosmetics application through global metabolite analysis. The compounds extracted from SCG of Ethiopia coffee (Yirgacheffe), Costa Rican coffee (Tarrazu) and Hawaiian coffee (Kona) were analyzed by ultra-high pressure liquid chromatography coupled with mass spectrometry (UPLC-MS). The ion chromatograms were submitted to XCMS platform operated by Center for Metabolomics at the Scripps Research Institute. The peak detection, peak grouping, spectra extraction, and retention alignment were processed by XCMS. The spectra were annotated and the compounds were identified and categorized by integration with METLIN, the world's largest metabolite database. Multivariate and univariate statistical analysis including PCA and cloud-plot were performed by XCMS to compare the chemical profiles between the three coffee cultivars. These analyses indicated that each cultivar showed a specific cluster. Over 200 compounds related to anti-oxidant, anti-inflammatory, anti-tyrosinase and anti-tumor for skin care application were identified by XCMS. Therefore, the presence of bioactive compounds in SCG makes it a potential source of raw material for cosmetic application (e.g., anti-oxidant, anti-inflammatory, skin-whiting, and anti-aging).


2019 ◽  
Vol 90 ◽  
pp. 01011 ◽  
Author(s):  
Wai-Leong Wong ◽  
Waye-Hong Lim ◽  
Jet Si ◽  
Man-Kee Lam ◽  
Yeek-Chia Ho

Biodiesel is one of the effective alternative fuels to overcome the problems associated with environmental issues and energy crisis. However, the production of biodiesel from edible oil has provoked the food versus fuel dispute. Thus, a non-edible crop, Annona muricata, is selected as the raw material to produce oil for biodiesel production. In this study, A. muricata oil was extracted with n-hexane at 70 °C for 6 h. Subsequently, the oil was transesterified with methanol and potassium hydroxide (KOH) to produce biodiesel. The significance of transesterification parameters including temperature, time, catalyst concentration, and oil-to-methanol ratio on biodiesel yield (%) was established through two-level factorial design. The factorial design shows that all parameters are significant. Besides, the high content of monounsaturated fatty acid (oleic acid) in the resultant biodiesel suggests that A. muricata biodiesel could display good fuel quality. This hypothesis is proven by the excellent calorific value (39.21 MJ kg-1).


2020 ◽  
Vol 181 ◽  
pp. 01002
Author(s):  
Punchaluck Sirinwaranon ◽  
Duangduen Atong ◽  
Viboon Sricharoenchaikul

Cassava rhizome (CR) was torrefied to provide superior solid fuel quality for further gasification process. The torrefaction was carried out in the absence of oxygen at 220, 240, 260, and 280°C with a fixed residence time. Solid fuel after torrefaction has a higher calorific value from that of reduced volatile matters. The optimum energy yield of torrefied CR is 88.16% at 260°C. The heating value of 20.86 MJ/kg for a torrefied product can be achieved compared to 15.37 MJ/kg for untreated CR. The subsequent gasification of torrefied CR at temperature of 800°C yielded the highest gas product of 65 wt.%. The carbon and hydrogen conversions into CO and H2 were 14.28% and 29.95%, respectively. Synthesis gas (syngas) from the conversion maintained the H2/CO ratio of around 2–2.50, which is suitable for the Fischer–Tropsch process or can be used as the feedstock for petrochemical industry.


2021 ◽  
Vol 22 (2) ◽  
pp. 10-20
Author(s):  
Amadou Dioulde Donghol Diallo ◽  
Ma’an Fahmi Rashid Alkhatib ◽  
Md Zahangir Alam ◽  
Maizirwan Mel

Empty fruit bunch (EFB), a biomass-based waste, was deemed a potential replacement for fossil fuel. It is renewable and carbon neutral. The efficient management of this potential energy will help to deal with the problem associated with fossil fuels. However, a key parameter for evaluating the quality of raw material (EFB) as a fuel in energy applications is the calorific value (CV). When this CV is low, then its potential utilization as feedstock will be restricted. To tackle this shortcoming, we propose to add municipal solid waste to enhance energetic value. Thus, two major issues will be solved: managing solid residues and contributing an alternative energy source. This study aimed to investigate the possibility of mixing EFB and municipal solid waste (MSW) to make clean energy that is conscious of the environment (climate change) and sustainable development. The selected MSW, comprising of plastics, textiles, foam, and cardboard, were mixed, with EFB at various ratios. Proximate analysis was used to determine moisture content, ash, volatiles, and fixed carbon, whilst elemental analysis, is used to determine CHNS/O for MSW, EFB and their various mixtures. The CV of each element was also measured. The research revealed a significant increase in the calorific value of EFB by mixing it with MSW according to MSW/EFB ratios: 0.25; 0.42; 0.66; 1.00 and 1.50 the corresponding calorific values in (MJ/kg) were 19.77; 21.22; 22.67; 27.04 and 28.47 respectively. While the calorific value of pure EFB was 16.86 MJ/kg, the mixing of EFB with MSW promoted the increase in the CV of EFB to an average of 23.83MJ/kg. Another potential environmental benefit of applying this likely fuel was the low chlorine (0.21 wt. % to 0.95 wt. %) and sulfur concentrations (0.041 wt. % to 0.078 wt.%). This potential fuel could be used as solid refuse fuel (SRF) or refuse-derived fuel (RDF) in a pyrolysis or gasification process with little to no environmental effects. ABSTRAK: Tandan buah kosong (EFB), sisa berasaskan biojisim, adalah berpotensi sebagai pengganti bahan bakar fosil. Ia boleh diperbaharui dan karbon neutral. Pengurusan berkesan pada potensi tenaga ini dapat membantu mengatasi masalah melibatkan bahan bakar fosil. Namun, kunci parameter bagi menilai kualiti bahan mentah (EFB) sebagai bahan bakar dalam aplikasi tenaga adalah nilai kalori (CV). Apabila CV rendah, potensi menjadi stok suapan adalah terhad. Sebagai penyelesaian, kajian ini mencadangkan sisa pepejal bandaran ditambah bagi meningkatkan nilai tenaga. Oleh itu, dua isu besar dapat diselesaikan: mengurus sisa pepejal dan menambah sumber tenaga alternatif. Kajian ini bertujuan mengkaji potensi campuran tandan buah kosong (EFB) dan sisa pepejal bandaran (MSW) bagi menghasilkan tenaga bersih dari sudut persekitaran (perubahan iklim) dan pembangunan lestari. Pemilihan MSW, terdiri daripada plastik, tekstil, gabus dan kadbod, dicampurlan dengan pelbagai nisbah EFB. Analisis proksimat telah digunakan bagi mendapatkan  kandungan kelembapan, abu, ruapan, dan karbon tetap, manakala analisis asas telah digunakan bagi mendapatkan CHNS/O bersama MSW, EFB dan pelbagai campuran lain. Nilai kalori (CV) setiap elemen turut diukur. Dapatan kajian menunjukkan penambahan ketara dalam nilai kalori EFB dengan campuran bersama MSW berdasarkan nisbah MSW/EFB 0.25; 0.42; 0.66; 1.00 dan 1.50 nilai kalori sepadan (MJ/kg) adalah 19.77; 21.22; 22.67; 27.04 dan 28.47 masing-masing. Manakala nilai kalori EFB tulen adalah 16.86 MJ/kg, campuran EFB dan MSW menunjukkan kenaikan CV dengan EFB pada purata 23.83MJ/kg. Antara potensi semula jadi lain adalah dengan mencampurkan bahan bakar ini dengan kalori rendah (0.21 wt. % kepada 0.95 wt. %) dan kepekatan sulfur (0.041 wt. % kepada 0.078 wt.%). Bahan bakar ini berpotensi sebagai bahan bakar pepejal sampah (SRF) atau bahan bakar yang terhasil dari pepejal sampah (RDF) melalui proses pirolisis atau proses gasifikasi yang sedikit atau tiada kesan langsung terhadap persekitaran.


2020 ◽  
Vol 61 (5) ◽  
pp. 135-144
Author(s):  
Huong Thu Thi Tran ◽  
Tong Xuan Nguyen ◽  
Yen Hai Thi Trinh ◽  
Hang Thi To ◽  
Huyen Thanh Thi Dang ◽  
...  

Four types of biochar material synthesized from spent coffee grounds by slow pyrolysis process CF1 (500(C/0.5h); CF2 (500(C/1.5h); CF3 (500(C/3h); CF4 (500(C/6h) is studied to treat two pollution parameters (COD and TSS) in livestock wastewater. Material characteristics were determined by SEM, EDX and BET methods. The results showed that the 4 samples of biochar materials were structured fiber clearly, the interplanar spacing which corresponds to the lattice plane. The C content in the biochar sample is higher than the initial raw material sample; the highest value recorded reaches 90.61% C (CF2). 100 mL of the original livestock waster water is filtered through columns with 4g of biochar CF1-CF4 during reaction times varied from 0h, 1h, 4h and 8h, the COD treatment efficiency and adsorption content of CF4 sample is highest of 96.41% and 188 mg/g after 8h, and the lowest value is 76.67% and 149.5 mg/g after 1h recorded in CF3 sample, however the COD value after treatment is still higher from 1.2 to 1.46 times than Vietnamese standard 62: 2016/MONRE - national technical regulation on the effluent of livestock. The CF3 material samples have the highest TSS treatment efficiency and adsorption content of 95.19% and 6.425 mg/g after 8h and the lowest of 66.78% and 4.575 mg/g recorded in CF1 samples after 1h, response the requirements of QCVN 62: 2016/MONRE. The results showed that biochar is a potential sorbent to removed pollutants from waste water.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohamed Elmously ◽  
Nils Jäger ◽  
Andreas Apfelbacher ◽  
Robert Daschner ◽  
Andreas Hornung

AbstractConversion of spent coffee grounds through the Thermo-Catalytic Reforming system (TCR®) is evaluated in this study. While, the TCR® is a technology that has been developed by Fraunhofer UMSICHT, which combines an intermediate pyrolysis and a catalytic reforming. The temperature of the catalytic reformer is varied between 500 and 700 °C to achieve an optimum yield quantities and qualities of the products. The hydrogen concentration is maximized at a reforming temperature of 700 °C, and a gas yield up to 52 wt% is achieved. The thermal stable bio-oil produced at 700 °C has the highest calorific value of 36.8 MJ/kg with significantly low oxygen and water content, low viscosity and low TAN (total acid number). Furthermore, the maximum bio-oil and char yields are obtained at the lowest reforming temperature of 500 °C. Overall spent coffee grounds show a great potential as feedstock in the Thermo-Catalytic Reforming for energy and bio-chemicals production.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6486
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Biomass is one of the most important sources of renewable energy. It is expected that in the coming decades, biomass will play a major role in replacing fossil fuels. The most commonly used biofuels include wood pellet, which is a cost-effective, uniform and easy-to-use material. In view of the growing interest in this type of resource, novel methods are being investigated to improve the quality of pellet. This article presents the results of a laboratory study focusing on wood pellets refined with waste sunflower cooking oil applied by spraying. In this work, authors attempted to modify the energy parameters of wood pellets with the use of waste cooking oil. Addition of waste cooking oil, applied at the rates of 2%, 4%, 6%, 8%, 10% and 12% relative to the weight of pellets, increased the calorific value of the pellets without decreasing their durability. The highest dose of the modifier (12%) on average led to a 12–16% increase in calorific value. In each case, the addition of sunflower oil resulted in decreased contents of ash in the pellets; on average a decrease of 16–38% was observed in the samples treated with the highest dose of the modifier. The treatment led to a higher content of elements affecting the heating value, i.e., carbon and hydrogen, which on average increased by 7.5–12%, and 7.0–10.0%, respectively. The presented method seems to be a promising way of increasing the calorific value of pellets. Further research on refining the method and the possibility of using it in industry is necessary.


Sign in / Sign up

Export Citation Format

Share Document