scholarly journals Energy Utilization of Spent Coffee Grounds in the Form of Pellets

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1235 ◽  
Author(s):  
Radovan Nosek ◽  
Maw Maw Tun ◽  
Dagmar Juchelkova

Nowadays it is important to limit the use and combustion of fossil fuels such as oil and coal. There is a need to create environmentally acceptable projects that can reduce or even stop greenhouse gas emissions. In this article, we dealt with the objectives of energy policy with regard to environmental protection, waste utilization, and conservation of natural resources. The main objective of the research was to assess the possibility of the use of spent coffee grounds (SCG) as fuel. As a part of the solution, the processing of coffee waste in the form of pellets, analysis of calorific value and combustion in the boiler were proposed. The experiments were done with four samples of pellets. These samples were made from a mixture of wood sawdust and spent coffee grounds with ratio 30:70 (wood sawdust: spent coffee grounds), 40:60, 50:50 and 100% of spent coffee grounds. The calorific values were compared with wood sawdust pellets (17.15 MJ.kg−1) and the best lower calorific value of 21.08 MJ.kg−1 was measured for 100% of spent coffee grounds. This sample did not achieve the desired performance during the combustion in the boiler due to the low strength of the sample.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 371
Author(s):  
Duk-Gam Woo ◽  
Sang Hyeon Kim ◽  
Tae Han Kim

To help mitigate the effects of global warming and fossil fuel depletion caused by human use of fossil fuels, solid fuel pellets were developed from a mixture of spent coffee grounds (SCG) and pine sawdust (PS). The feasibility of SCG-PS pellets as biofuel was also verified by evaluating its fuel quality. An increase in the proportion of SCG in the pellet led to an increase in its calorific value, owing to the high C, H, and oil contents, and increases in the ash and S contents, owing to the high S content in SCG. Analysis of the feedstock particle size distribution revealed that SCG particles are smaller than PS particles; thus, the durability of the pellet decreases as the proportion of SCG increases. Accordingly, the samples with higher SCG proportions (70 and 90 wt.%) did not meet the moisture content standards for biomass solid refuse fuel (bio-SRF) set by the Korea Ministry of Environment, whereas the samples with lower SCG proportions did. In particular, CP10 (10 wt.% SCG + 90 wt.% PS) satisfied the quality standards of Grade 1 wood pellets, demonstrating the feasibility of using SCG as a raw material for biofuel pellet production.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4667
Author(s):  
Sunyong Park ◽  
Hui-Rim Jeong ◽  
Yun-A Shin ◽  
Seok-Jun Kim ◽  
Young-Min Ju ◽  
...  

Agricultural by-products have several disadvantages as fuel, such as low calorific values and high ash contents. To address these disadvantages, this study examined the mixing of agricultural by-products and spent coffee grounds, for use as a solid fuel, and the improvement of fuel characteristics through torrefaction. Pepper stems and spent coffee grounds were first dried to moisture contents of <15% and then combined, with mixing ratios varying from 9:1 to 6:4. Fuel pellets were produced from these mixtures using a commercial pelletiser, evaluated against various standards, and classified as grade A, B, or Bio-SRF. The optimal ratio of pepper stems to spent coffee grounds was determined to be 8:2. The pellets were torrefied to improve their fuel characteristics. Different torrefaction temperatures improved the mass yields of the pellets to between 50.87% and 88.27%. The calorific value increased from 19.9% to 26.8% at 290 °C. The optimal torrefaction temperature for coffee ground pellets was 230 °C, while for other pellets, it was 250 °C. This study provides basic information on the potential enhancement of agricultural by-products for fuel applications.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohamed Elmously ◽  
Nils Jäger ◽  
Andreas Apfelbacher ◽  
Robert Daschner ◽  
Andreas Hornung

AbstractConversion of spent coffee grounds through the Thermo-Catalytic Reforming system (TCR®) is evaluated in this study. While, the TCR® is a technology that has been developed by Fraunhofer UMSICHT, which combines an intermediate pyrolysis and a catalytic reforming. The temperature of the catalytic reformer is varied between 500 and 700 °C to achieve an optimum yield quantities and qualities of the products. The hydrogen concentration is maximized at a reforming temperature of 700 °C, and a gas yield up to 52 wt% is achieved. The thermal stable bio-oil produced at 700 °C has the highest calorific value of 36.8 MJ/kg with significantly low oxygen and water content, low viscosity and low TAN (total acid number). Furthermore, the maximum bio-oil and char yields are obtained at the lowest reforming temperature of 500 °C. Overall spent coffee grounds show a great potential as feedstock in the Thermo-Catalytic Reforming for energy and bio-chemicals production.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Colantoni ◽  
E. Paris ◽  
L. Bianchini ◽  
S. Ferri ◽  
V. Marcantonio ◽  
...  

AbstractIndustrial development and increased energy requirements have led to high consumption of fossil fuels. Thus, environmental pollution has become a profound problem. Every year, a large amount of agro-industrial, municipal and forest residues are treated as waste, but they can be recovered and used to produce thermal and electrical energy through biological or thermochemical conversion processes. Among the main types of agro-industrial waste, soluble coffee residues represent a significant quantity all over the world. Silver skin and spent coffee grounds (SCG) are the main residues of the coffee industry. The many organic compounds contained in coffee residues suggest that their recovery and use could be very beneficial. Indeed, thanks to their composition, they can be used in the production of biodiesel, as a source of sugar, as a precursor for the creation of active carbon or as a sorbent for the removal of metals. After a careful evaluation of the possible uses of coffee grounds, the aim of this research was to show a broad characterization of coffee waste for energy purposes through physical and chemical analyses that highlight the most significant quality indexes, the interactions between them and the quantification of their importance. Results identify important tools for the qualification and quantification of the effects of coffee waste properties on energy production processes. They show that (SCG) are an excellent raw material as biomass, with excellent values in terms of calorific value and low ash content, allowing the production of 98% coffee pellets that are highly suitable for use in thermal conversion systems. Combustion tests were also carried out in an 80kWth boiler and the resulting emissions without any type of abatement filter were characterized.


Author(s):  
VIBIANTI DWI PRATIWI

ABSTRAKSumber daya energi terbarukan alternatif, seperti biobriket dari biomassa atau limbah organik, dapat menjadi solusi untuk masalah ini. Limbah kopi merupakan limbah yang dihasilkan dalam proses produksi, limbah biomassa ini berpotensi untuk digunakan sebagai bahan baku pembuatan biobriket karena memiliki nilai kalor yang cukup tinggi. Briket arang bio adalah arang gumpalan atau batang yang dibuat dari limbah organik yang telah dicetak sedemikian rupa dengan kekuatan tekanan tertentu dan dicampur dengan bahan perekat seperti tepung tapioka. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh suhu pirolisis dalam produksi briket dari limbah kopi. Suhu pirolisis yang akan digunakan: 200oC, 250oC, 300oC, 400oC dan 500oC. Selain itu, briket akan terdeteksi kadar air, kadar abu, dan nilai kalor. Briket terbaik dari ampas kopi ditemukan pada suhu pembakaran 300oC tanpa perekat dengan nilai kalor 7549,42 kal/gram dan dapat menghasilkan daya listrik sebesar 292,49 W. Namun, briket ini menghasilkan kadar abu tak terduga sebesar 3,7% yang masih di bawah standar SNI 01-6235-2000.Kata kunci: Bahan Bakar Alternatif, Ampas Kopi, Briket, Pirolisis ABSTRACTAlternative renewable energy resources, such as biobriquette from biomass or organic wastes, can be a solution for this problem. Coffee waste is a waste generated in the production process, this biomass waste is potential to be used as raw material for making biobriquette because it has a high enough calorific value. Bio charcoal briquettes are clots or rods charcoal that made from organic wastes which has been molded in such a way with a certain force of pressure and mixed with adhesive materials such as tapioca starch. The purpose of the study is to determine the effect of pyrolysis temperature in the production of briquettes from coffee waste. Based on several literature studies, the pyrolysis temperatures which are going to be used: 200oC, 250oC, 300oC,  400oC and 500oC. In addition, the briquette will be detected the water content, ash content, and caloric value. The best briquettes from coffee grounds are found at a combustion temperature of 300oC without adhesive with a heating value of 7549.42 cal/gram and can produce electrical power of 292,49 W. However, this briquette produces unexpected ash content of 3.7% which is still below to SNI 01-6235-2000 standards.Keywords: Alternative Energy, Biofuel, Briquettes, Coffee Waste, Pyrolysis


2017 ◽  
Vol 899 ◽  
pp. 130-135 ◽  
Author(s):  
Fernando Lucas Tibola ◽  
Tiago José Pires de Oliveira ◽  
Wender Santana Carvalho ◽  
Carlos Henrique Ataíde ◽  
Cássia Regina Cardoso

The lignocellulosic biomass is a renewable alternative for fossil fuels. The extensive cultivation of coffee grounds in Brazil generates a large amount of residues, as coffee husks. The work aimed at performing the coffee husks characterization, investigating the viability for fast pyrolysis application. Coffee husks were dried, grinded in a knives mill and sieved using a mechanical sieving; different vibration frequencies and times were used to evaluate the effect of these variables in the size distribution. The true density was inferred for three distinct size ranges of the coffee husks, using a helium pycnometer. Proximate and ultimate analyses were performed. The analytical pyrolysis was realized at 550°C, using a micro pyrolyzer (CDS 5200), vapors was identified by a gas chromatograph and a mass spectrometer (GC-MS QP 2010 plus, Shimadzu). The influence of the particles irregular shape was evidenced in the results of size distribution. The values of true density were around 1.5 g/cm3. The smaller the particle size, the higher the true density of the sample. Coffee husks can be used to generate high added value compounds: 1,3 pentadiene, limonene and n-hexadecanoic acid. Considering the use of coffee husks bio-oil as a fuel, results indicated that the bio-oil will present high calorific value, important acidity and smaller increases in viscosity and molecular weight if compared to the bio-oil of other lignocellulosic materials.


Waste generation in Nigeria is associated with increase in population resulting from economic development in cities, and this depends on high consumption of raw materials, which is gradually leading to the depletion of natural resources. The management of these wastes and there adverse impacts on the environment was observed to be one of the major challenges being tackled by state and local government environmental protection agencies. This paper focuses on recycling practices in Nigeria, which involves the collection and processing of materials that would otherwise be thrown away as trash, and how these waste materials can be turned into new products, as a fundamental technique in the recovery of natural resources after use. It also reviews the role of waste recycling and its impact on the sustainability of these endangered raw materials.Thus, recycling accomplishes the dual function of the waste utilization and environmental safety, which is a key tonatural resource conservation.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


Sign in / Sign up

Export Citation Format

Share Document