scholarly journals A Comparative Analysis of Energy Consumption by Conventional and Anchor Based Dynamic Positioning of Ship

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 524
Author(s):  
Andrzej Łebkowski ◽  
Jakub Wnorowski

One of the requirements for ships equipped with dynamic positioning system is the ability to maintain a given position in various hydrometeorological conditions. At the same time, efforts at reducing electricity consumption are made in order to reduce operating costs and emissions of exhaust gases, such as sulfur oxides and greenhouse gases such as carbon dioxide (CO2). For this purpose, the ship designer at the design stage must predict both how much energy the ship will theoretically use during operation and how the expenditure can be reduced. The publication presents a comparison of energy consumption with two different approaches to ship positioning: the use of classic dynamic positioning utilizing a set of thrusters and by using a set of anchors. In order to determine the energy consumption during positioning, the matrix method was used, on the basis of which the analysis of the ability to hold the position of the ship (capability plot) was performed, in accordance with the recommendations of the classification society DNV GL. Thanks to this analysis, it was possible to find such a distribution of thrust vectors on propulsors that the ship would not lose its set position under the hydrometeorological conditions specified in the analysis. As a result of comparing the two positioning systems, it turned out that using anchor-based positioning uses 24% less energy than positioning based on a set of thrusters, which translates into 24% less CO2 emissions into the atmosphere.

Author(s):  
Omar Chamorro Atalaya ◽  
Angel Quesquen-Porras ◽  
Dora Arce Santillan

<span>This article presents the development of a lighting control network to reduce the energy consumption of a commercial building, using the KNX protocol; because of the high rates of electricity consumption, the same that are reflected in the payment of the electricity supply. For this, the design of the network architecture is carried out, the tree type quality and it has KNX, DALI components and LED luminaires, which are interconnected by means of an Ethernet type BUS; The KNX protocol configuration is then performed using the ETS version 5 software; carries out the implementation of KNX technology, determines the reduction of energy consumption by 82.33%. Likewise, emissions of carbon dioxide (CO2), one of the main gases involved in climate change, were reduced by 85%. With these results we obtain economic and environmental benefits; Reason why it is proposed to perform the same procedure for the control of air conditioning systems, since their operation represents 32.8% of the energy consumption of an establishment.</span>


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5643
Author(s):  
Yujin Ko ◽  
Hyogeun Oh ◽  
Hiki Hong ◽  
Joonki Min

Between 60% and 70% of the total energy load of a house or office occurs through the exteriors of the building, and in the case of offices, heat loss from windows and doors can approach 40%. A need for glass that can artificially control the transmittance of visible light has therefore emerged. Smart windows with suspended particle device (SPD) film can reduce energy consumption by responding to environmental conditions. To measure the effect of SPD windows on the energy requirements for cooling and heating in Korea, we installed a testbed with SPD windows. With TRNSYS18, the comparison between measurements and simulation has been made in order to validate the simulation model with respect to the modeling of an SPD window. Furthermore, the energy requirements of conventional and SPD-applied windows were compared and analyzed for a standard building that represented an actual office building. When weather for the city of Anseong and a two-speed heat pump were used to verify the simulation, the simulated electricity consumption error compared with the testbed was −1.0% for cooling and −0.9% for heating. The annual electricity consumption error was −0.9%. When TMY2 Seoul weather data were applied to the reference building, the decrease in electricity consumption for cooling in the SPD model compared with the non-SPD model was 29.1% and the increase for heating was 15.8%. Annual electricity consumption decreased by 4.1%.


2008 ◽  
Author(s):  
J. A. Leavitt

An existing approach to optimizing thrust allocation in surface vessels is considered for general use with dynamic positioning systems. A solution to the power limiting problem is presented, and the handling of azimuthing thrusters is significantly improved. Various other considerations related to thrust allocation are treated. A generalized algorithm is developed.


Author(s):  
Eduardo A. Tannuri ◽  
Tiago T. Bravin ◽  
Celso P. Pesce

Wave filtering is an essential function of a Dynamic Positioning System, being responsible for the separation between high-frequency wave induced motions and low-frequency ones, which must be controlled. Low attenuation of the first components may cause oscillatory control action, high fuel consumption and can damage propeller systems. On the other hand, depending on filtering design, high levels of attenuation may be associated with non-admissible delay-times, which may cause instability in the closed-loop system. Traditionally, low-pass or notch-type filters have been used since the first DP systems, due to the simplicity, acceptable performance and possibility of being implemented using analog circuits. Alternatively, observers based on Kalman Filtering Theory have also been used, based on simplified ship models, separating low and high frequency motions. Two wave filters, representing each of those categories, were implemented in a complete DP simulator. All DP components and algorithms are considered and modeled in the simulator, including propellers, thrust allocation, wind-feedforward and different control strategies. Environmental loads are evaluated using fully validated models, including wind, current and wave actions. A pipe-laying barge under typical Campos Basin environmental conditions has been considered as example. Several aspects of the filtering algorithms were analyzed and compared, involving the influence of each filter in the overall DP performance, relationship of design parameters with physical system, ease of commissioning and tuning. The trade off between low frequency tracking (which is associated with the delay time) and wave response suppression is analyzed and discussed for both categories of filters.


Author(s):  
Stefania Defilippo Rocha ◽  
Ricardo B. Portella

The increase of the offshore deep water production activities in Brazil based on the growth of the FPSO/FSO fleet, became the offloading operations a critical issue related to the possibilities of platform downtime. In order to improve the actual operational behavior, a new generation of shuttle tankers equipped with dynamic positioning systems is now under construction. The intent of this paper is to present the work performed for the dimensioning of the first generation of the DP Shuttle Tankers specifically projected to operate on Brazilian deep waters [1]. The system is intended to be installed in existing ships converted to operate as DP shuttle tankers.


Author(s):  
Xavier Dal Santo ◽  
Peter Jochmann

Arctic areas raise a continuously increasing interest for exploration and research expeditions that must be performed in more and more extreme conditions. Fierce competition and constraints in polar environment require technologic improvements that are progressively enabled by research activities. Amongst them HSVA and SIREHNA participate to the European DYPIC project (www.dypic.eu) that aims at improving ship design and dynamic positioning systems in ice-covered waters. Feasibility studies are being performed with free running ship models controlled by a dynamic positioning system installed in the ice tank facility. Main issues to be tackled are induced by the model scale that raises constraints in thruster fabrication, model equipment and real-time control. In parallel algorithms and guidance strategies have to be adapted to the characteristics of ice withstand forces that present a high variability in amplitude with respect of time. In conclusion trials demonstrate the feasibility of free running model tests in ice conditions where a high level of control performance is expected. The results obtained by model tests will be scaled real life, giving way to optimized ship design techniques, control means and guidance algorithms.


2021 ◽  
pp. 1-28
Author(s):  
Francesco Mauro ◽  
Aron Benci ◽  
Victor Ferrari ◽  
Enrico Della Valentina

In some specific environmentally protected areas, conventional mooring systems cannot be used by large yachts for stationing at anchor and therefore, the adoption of a dynamic positioning system is required. It becomes then necessary to evaluate the station keeping capabilities of a yacht since the early-design stage. Adopting a quasi-static approach, it is possible to perform a standard capability analysis, as commonly done for the offshore industry, obtaining a capability plot as output. However, capability plots are referring to specific wind-wave correlation that are not covering all the possible wave combinations present in a sea area. Here, it is proposed to use a scatter diagram approach for the dynamic positioning analysis of a large yacht, considering the specific sea areas where the yacht shall operate, in order to figure out the downtime period of the DP system per each sea area. The proposed method can be coupled with traditional ship motions analysis, leading to a combination between comfort assessment and DP predictions. In the present work, use has been made of a traditional displacement yacht 72 m long, comparing five different DP system configurations and evaluating an enhanced comfort ranking combining ISO AWI-22834 guidelines for large yachts with ISO AWI-22822 DP analysis.


2018 ◽  
Vol 215 (4) ◽  
pp. 143-155
Author(s):  
Paweł Zalewski ◽  
Roman Haberek ◽  
Mirosław Chmieliński

Abstract The paper presents the dynamic positioning system (DP), particularly its thruster allocation model, designed for ORP ‘Kormoran’, a Polish mine destroyer built for the Polish Navy in Remontowa Shipbuilding S.A. in Gdańsk. The ORP ‘Kormoran’ ship is the newest and best equipped minehunter ship in Europe. The main task of the new Polish mine destroyer is to search for, classify, identify and combat marine mines and improvised underwater explosives, recognize waterways, transport mines, deploy mines and provide remote control of self-propelled anti-mine platforms. The dynamic positioning control system of the ship presented in the article was constructed by Autocomp Management Ltd. from Szczecin, the only in Poland and one of the few producers of dynamic ship positioning systems in the world.


2019 ◽  
Vol 01 (02) ◽  
pp. 31-39 ◽  
Author(s):  
Duraipandian M. ◽  
Vinothkanna R.

The paper proposing the cloud based internet of things for the smart connected objects, concentrates on developing a smart home utilizing the internet of things, by providing the embedded labeling for all the tangible things at home and enabling them to be connected through the internet. The smart home proposed in the paper concentrates on the steps in reducing the electricity consumption of the appliances at the home by converting them into the smart connected objects using the cloud based internet of things and also concentrates on protecting the house from the theft and the robbery. The proposed smart home by turning the ordinary tangible objects into the smart connected objects shows considerable improvement in the energy consumption and the security provision.


2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


Sign in / Sign up

Export Citation Format

Share Document