scholarly journals The Conceptual Research over Low-Switching Modulation Strategy for Matrix Converters with the Coupled Reactors

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 675
Author(s):  
Pawel Szczepankowski ◽  
Jaroslaw Luszcz ◽  
Alexander Usoltsev ◽  
Natalia Strzelecka ◽  
Enrique Romero-Cadaval

In this paper, different Pulse Width Modulation (PWM) strategies for operating with a low-switching frequency, a topology that combines Conventional Matrix Converters (CMCs), and Coupled Reactors (CRs) are presented and discussed. The principles of the proposed strategies are first discussed by a conceptual analysis and later validated by simulation. The paper shows how the combination of CMCs and CRs could be of special interest for sharing the current among these converters’ modules, being possible to scale this solution to be a modular system. Therefore, the use of coupled reactors allows one to implement phase shifters that give the solution the ability to generate a stair-case load voltage with the desired power quality even the matrix converters are operated with a low-switching frequency close to the grid frequency. The papers also address how the volume and weight of the coupled reactors decrease with the growth of the fundamental output frequency, making this solution especially appropriate for high power applications that are supplied at high AC frequencies (for example, in airport terminals, where a supply of 400 Hz is required).

Author(s):  
Abhinav Vinod Deshpande

The matrix converter converts the input line voltage into a variable voltage with an unrestricted output frequency without using an intermediate circuit, dc link circuit. A pure sine in and pure sine out is the unique feature of the matrix converter. This research paper also analyzes the basic operating principle and the simulation modeling of the direct matrix converter, which is controlled by the Space Vector Pulse Width Modulation technique by using the software which is known as MATLAB/Simulink. The most desirable features in the power frequency changes can be fulfilled by using the matrix converters, and this is the reason for the tremendous interest in the topology. Since the power electronic circuits which is known as the motor drives are used to operate the AC motors at the frequencies other than that of the supply.


2021 ◽  
Author(s):  
Jiacheng Wang

High-power multimodular matrix converters (MMMCs) comprising multiple threephase to single-phase matrix converter modules have emerged as a viable topology candidate for medium-voltage adjustable speed drives. As a combination of direct power conversion and cascaded multilevel structure, the MMMCs inherit features such as elimination of dc capacitors, four quadrant operation capability, employment of lowvoltage devices only, and superior output waveform quality under a limited device switching frequency. Due to their particular topological structure, modulation scheme design for the MMMCs is not straightforward and complicated. The presented work is mainly focused on development of suitable modulation schemes for the MMMCs. Several viable schemes as well as their corresponding switching patterns are proposed and verified by both simulation and experimental results. In order for the MMMCs to produce sinusoidal waveforms at both input and output ac terminals, a direct transfer matrix based modulation scheme is presented. It is revealed that a suitable modulation strategy for the MMMCs should aim at fabricating the total input current on the primary side of the isolation transformer. For topologies with more than two modules in cascade on each output phase, switching period displacement is necessary among modules to generate multilevel output waveforms. An indirect space vector based modulation scheme for the MMMCs is developed. With a few presumptions satisfied and viewed from a certain perspective, the MMMCs can still be modeled indirectly and be divided into fictitious rectifier and inverter stages. Therefore, space vector modulation methods can be independently applied to both stages for duty ratio calculation, before the results are converted and combined for determining per-phase output pulses. A new output switching pattern providing improved harmonic performance is also proposed. A novel modulation scheme based on diode rectifier emulation and phase-shifted sinusoidal pulse-width modulation is proposed. The method sacrifices input power factor adjustment, but enables the use of an indirect module construction leading to significantly reduced device count and complexity. Strategy for reducing additional switchings caused by input voltage ripples is also implemented and explained. In addition to simulation verifications, all the proposed schemes are further tested experimentally on a low-voltage prototype built in the lab. Details about the prototype implementation are introduced.


2021 ◽  
Author(s):  
Jiacheng Wang

High-power multimodular matrix converters (MMMCs) comprising multiple threephase to single-phase matrix converter modules have emerged as a viable topology candidate for medium-voltage adjustable speed drives. As a combination of direct power conversion and cascaded multilevel structure, the MMMCs inherit features such as elimination of dc capacitors, four quadrant operation capability, employment of lowvoltage devices only, and superior output waveform quality under a limited device switching frequency. Due to their particular topological structure, modulation scheme design for the MMMCs is not straightforward and complicated. The presented work is mainly focused on development of suitable modulation schemes for the MMMCs. Several viable schemes as well as their corresponding switching patterns are proposed and verified by both simulation and experimental results. In order for the MMMCs to produce sinusoidal waveforms at both input and output ac terminals, a direct transfer matrix based modulation scheme is presented. It is revealed that a suitable modulation strategy for the MMMCs should aim at fabricating the total input current on the primary side of the isolation transformer. For topologies with more than two modules in cascade on each output phase, switching period displacement is necessary among modules to generate multilevel output waveforms. An indirect space vector based modulation scheme for the MMMCs is developed. With a few presumptions satisfied and viewed from a certain perspective, the MMMCs can still be modeled indirectly and be divided into fictitious rectifier and inverter stages. Therefore, space vector modulation methods can be independently applied to both stages for duty ratio calculation, before the results are converted and combined for determining per-phase output pulses. A new output switching pattern providing improved harmonic performance is also proposed. A novel modulation scheme based on diode rectifier emulation and phase-shifted sinusoidal pulse-width modulation is proposed. The method sacrifices input power factor adjustment, but enables the use of an indirect module construction leading to significantly reduced device count and complexity. Strategy for reducing additional switchings caused by input voltage ripples is also implemented and explained. In addition to simulation verifications, all the proposed schemes are further tested experimentally on a low-voltage prototype built in the lab. Details about the prototype implementation are introduced.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4450
Author(s):  
Krzysztof Jakub Szwarc ◽  
Pawel Szczepankowski ◽  
Janusz Nieznański ◽  
Cezary Swinarski ◽  
Alexander Usoltsev ◽  
...  

This paper proposes and discusses a concept of a hybrid modulation for the control of modular voltage source inverters with coupled reactors. The use of coupled reactors as the integrating elements leads to significant reduction in the size and weight of the circuit. The proposed modulation combines novel coarsely quantized pulse amplitude modulation (CQ-PAM) and innovative space-vector pulse width modulation (SVPWM). The former enjoys very low transistor switching frequency and low harmonic elimination, while the latter ensures high resolution of amplitude control. The SVPWM is based on the use of barycentric coordinates. The feasibility of the proposed solution is verified by simulations and laboratory tests of a 12-pulse modular voltage source inverters with two-level and three-level component inverters.


In recent years, matrix converters have become increasingly attractive for these applications because they fulfill all the requirements, having the potential to replace the conventionally used rectifier_dc link_inverter structures. The matrix converter is an array of controlled semiconductor switches that connects directly the three-phase source to the three-phase load. It utilizes bidirectional controlled switch to achieve automatic conversion of power from AC to AC. In the last few years, an increase in research work has been observed, bringing this topology closer to the industrial application.There are several modulation techniques for matrix converter out of each Space Vector Pulse Width Modulation(SVPWM) is considered. It is an algorithm for the control of pulse width modulation width modulation (PWM). Indirect matrix converter is implemented because of its simplicity in switching scheme and advantages over Direct matrix converter. Three phase matrix converter is studied and implemented using MATLAB/SIMULINK. Finally the results are compared with conventional dc-link back to back converter. From the results, it can be concluded that THD level of line voltages, phase voltages is reduced in case of Indirect matrix converter when compared to conventional dc-link back to back converter.


2015 ◽  
Vol 9 (1) ◽  
pp. 553-559
Author(s):  
HU Xin-xin ◽  
Chen Chun-lan

In order to optimize the electric energy quality of HVDC access point, a modular multilevel selective harmonic elimination pulse-width modulation (MSHE-PWM) method is proposed. On the basis of keeping the minimum action frequency of the power device, MSHE-PWM method can meet the requirement for accurately eliminating low-order harmonics in the output PWM waveform. Firstly, establish the basic mathematical model of MMC topology and point out the voltage balance control principle of single modules; then, analyze offline gaining principle and realization way of MSHEPWM switching angle; finally, verify MSHE-PWM control performance on the basis of MMC reactive power compensation experimental prototype. The experimental result shows that the proposed MSHE-PWM method can meet such performance indexes as low switching frequency and no lower-order harmonics, and has verified the feasibility and effectiveness thereof for optimizing the electric energy quality of HVDC access point.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1430
Author(s):  
Aleksandr Viatkin ◽  
Riccardo Mandrioli ◽  
Manel Hammami ◽  
Mattia Ricco ◽  
Gabriele Grandi

This paper presents a comprehensive study of peak-to-peak and root-mean-square (RMS) values of AC current ripples with balanced and unbalanced fundamental currents in a generic case of three-phase four-leg converters with uncoupled AC interface inductors present in all three phases and in neutral. The AC current ripple characteristics were determined for both phase and neutral currents, considering the sinusoidal pulse-width modulation (SPWM) method. The derived expressions are simple, effective, and ready for accurate AC current ripple calculations in three- or four-leg converters. This is particularly handy in the converter design process, since there is no need for heavy numerical simulations to determine an optimal set of design parameters, such as switching frequency and line inductances, based on the grid code or load restrictions in terms of AC current ripple. Particular attention has been paid to the performance comparison between the conventional three-phase three-leg converter and its four-leg counterpart, with distinct line inductance values in the neutral wire. In addition to that, a design example was performed to demonstrate the power of the derived equations. Numerical simulations and extensive experimental tests were thoroughly verified the analytical developments.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 466
Author(s):  
Pawel Szczepankowski ◽  
Natalia Strzelecka ◽  
Enrique Romero-Cadaval

This article presents three variants of the Pulse Width Modulation (PWM) for the Double Square Multiphase type Conventional Matrix Converters (DSM-CMC) supplying loads with the open-end winding. The first variant of PWM offers the ability to obtain zero value of the common-mode voltage at the load’s terminals and applies only six switches within the modulation period. The second proposal archives for less Total Harmonic Distortion (THD) of the generated load voltage. The third variant of modulation concerns maximizing the voltage transfer ratio, minimizing the number of switching, and the common-mode voltage cancellation. The discussed modulations are based on the concept of sinusoidal voltage quadrature signals, which can be an effective alternative to the classic space-vector approach. In the proposed approach, the geometrical arrangement of basic vectors needed to synthesize output voltages is built from the less number of vectors, which is equal to the number of the matrix converter’s terminals. The PWM duty cycle computation is performed using only a second-order determinant of the voltages coordinate matrix without using trigonometric functions. A new approach to the PWM duty cycles computing and the load voltage synthesis by 5 × 5 and 12 × 12 topologies has been verified using the PSIM simulation software.


2014 ◽  
Vol 573 ◽  
pp. 143-149
Author(s):  
N. Ismayil Kani ◽  
B.V. Manikandan ◽  
Prabakar Perciyal

—This The Pulse Width Modulation (PWM) DC-to-AC inverter has been widely used in many applications due to its circuit simplicity and rugged control scheme. It is however driven by a hard-switching pulse width modulation (PWM) inverter, which has low switching frequency, high switching loss, high electro-magnetic interference (EMI), high acoustic noise and low efficiency, etc. To solve these problems of the hard-switching inverter, many soft-switching inverters have been designed in the past. Unfortunately, high device voltage stress, large dc link voltage ripples, complex control scheme and so on are noticed in the existing soft-switching inverters. This proposed work overcomes the above problems with simple circuit topology and all switches work in zero-voltage switching condition. Comparative analysis between conventional open loop, PI and fuzzy logic based soft switching inverter is also presented and discussed. Keywords—Zero voltage switching, Inverter, Dc link, PI controller, Fuzzy logic system control ,Modulation strategy, Soft switching


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Jagabar Sathik ◽  
Dhafer J. Almakhles ◽  
N. Sandeep ◽  
Marif Daula Siddique

AbstractMultilevel inverters play an important role in extracting the power from renewable energy resources and delivering the output voltage with high quality to the load. This paper proposes a new single-stage switched capacitor nine-level inverter, which comprises an improved T-type inverter, auxiliary switch, and switched cell unit. The proposed topology effectively reduces the DC-link capacitor voltage and exhibits superior performance over recently switched-capacitor inverter topologies in terms of the number of power components and blocking voltage of the switches. A level-shifted multilevel pulse width modulation scheme with a modified triangular carrier wave is implemented to produce a high-quality stepped output voltage waveform with low switching frequency. The proposed nine-level inverter’s effectiveness, driven by the recommended modulation technique, is experimentally verified under varying load conditions. The power loss and efficiency for the proposed nine-level inverter are thoroughly discussed with different loads.


Sign in / Sign up

Export Citation Format

Share Document