A New Field-Aided Germanium-Induced Lateral Crystallization of Silicon

2001 ◽  
Vol 664 ◽  
Author(s):  
Kianoush Naeli ◽  
Shamsoddin Mohajerzadeh ◽  
Ali Khakifirooz ◽  
Saber Haji ◽  
Ebrahim A. Soleimani

ABSTRACTThe effect of an electric field on germanium-seeded lateral crystallization of a-Si is studied for the first time and compared to this effect in Ni-induced lateral growth. While the crystallization rate is lower when Ge is used as the nucleation seed and annealing should be done at higher temperatures, filed-aided crystallization shows a similar behavior to that observed for Ni-induced crystallization. Optical microscopy results indicate that grain growth starting from the negative electrode occurs in Si films at annealing temperatures higher than 480°C, while the applied electric field ranges form 200 to 1400V/cm. SEM was also used to confirm the crystallinity of the films.

2001 ◽  
Vol 664 ◽  
Author(s):  
Jae-Bok Lee ◽  
Chul-Ho Kim ◽  
Se-Youl Kwon ◽  
Duck-Kyun Choi

ABSTRACTA novel concept of field aided lateral crystallization (FALC) and the effects of Cu on FALC of amorphous silicon (a-Si) were investigated. Cu was found to induce the lateral crystallization toward a metal-free region as well as the crystallization of a-Si in contact with Cu. In particular, the lateral crystallization caused by Cu was noticeably accelerated at the negative electrode side in every pattern with an aid of electric field, while it was retarded at the positive electrode side. The occurrence of Cu-FALC phenomenon was interpreted in terms of dominant diffusing species (DDS) in the reaction between metal and Si. The FALC velocity increased with the applied field intensity and the annealing temperature. The crystallization of a-Si was achieved at temperatures as low as 375°C when the annealing time increased in the presence of high electric field, above 30V/cm. Therefore, we could demonstrate the possibility of low temperature (<500°C) polycrystalline silicon (poly-Si) crystallization using Cu as a mediator in FALC technology.


2001 ◽  
Vol 664 ◽  
Author(s):  
Leila Rezaee ◽  
Shamsoddin Mohajerzadeh ◽  
Ali Khakifirooz ◽  
Saber Haji ◽  
Ebrahim Asl Soleimani

ABSTRACTA novel method of UV-assisted metal-induced-crystallization is introduced to grow polysilicon films on ordinary glass at temperatures as low as 400°C. Annealing is accomplished in the presence of an ultra-violet exposure, leading to high crystallinity of the silicon film as confirmed by XRD, TEM and SEM analyses. A back-reflecting chromium layer is incorporated to further trap UV photons and enhance their absorption in the silicon film. This results in a significant increase in the crystallization rate as studied by XRD spectroscopy. A growth rate of 2 µm/hr is observed at 400 °C, when employing this method for lateral crystallization. Thin-film transistors fabricated using the proposed UV-assisted MILC show a threshold voltage of 1V and hole mobility of about 50 cm2/V.s.


2005 ◽  
Vol 891 ◽  
Author(s):  
Hiroshi Kanno ◽  
Atsushi Kenjo ◽  
Taizoh Sadoh ◽  
Masanobu Miyao

ABSTRACTMetal-induced lateral crystallization of amorphous Si has been investigated under a wide range of electric fields (0-4000 V/cm). In the low field region (<100 V/cm), lateral growth velocity at the cathode side was enhanced by applying an electric field. This achieved formation of poly-Si with a large area (∼50 μm) during low-temperature annealing (525°C, 25 h). When the electric field exceeded 100 V/cm, the lateral growth velocity decreased with increasing the electric field strength. Under the extremely high electric field (>2000 V/cm), directional growth aligned to the electric field was observed. This new findings will be a powerful tool to achieve new poly-Si with highly controlled structures.


1996 ◽  
Vol 441 ◽  
Author(s):  
Byung-Il Lee ◽  
Kwang-Ho Kim ◽  
Won-Cheol Jeong ◽  
Pyung-Su Ahn ◽  
Jin-Wook Shin ◽  
...  

AbstractBasic mechanisms for both Ni- and Pd-metal induced lateral crystallization (MILC) are investigated. For both cases, tiny silicides were formed under the metal deposited area, and propagated toward amorphous Si films leaving crystallized Si behind at temperatures as low as 500 °C. Ni-MILC was influenced by Pd such that the lateral crystallization rate was enhanced, and the temperature for the lateral crystallization was lowered to 450 °C. Through TEM analysis and external stress experiments, it was found that the enhancement of the lateral crystallization rate was closely related to the compressive stress generated by the formation of nearby Pd2Si.


2003 ◽  
Vol 762 ◽  
Author(s):  
Yaocheng Liu ◽  
Michael D. Deal ◽  
Mahmooda Sultana ◽  
James D. Plummer

AbstractMetal-induced crystallization (MIC) of amorphous Si is gaining increased interest because of its potential use for low-temperature fabrication of integrated circuits. In this work, the MIC technique was used to make Si nanocrystals and the effects of stress on the crystallization were studied. Amorphous Si films were deposited onto the Si substrate with thermal oxides on top by low-pressure chemical vapor deposition (LPCVD) and then patterned into nanoscale pillars by electron beam lithography and reactive ion etching. A conformal low-temperature oxide (LTO) layer was deposited to cover the pillars, followed by an anisotropic etch back to form a spacer, leaving only the top surface of the pillars exposed to the 5 nm Ni sputtering deposition afterwards. An HF dip was used to partially remove the LTO spacers on the pillars, leading to different LTO thicknesses on different samples. These samples were then annealed to crystallize the amorphous Si pillars, forming Si nanocrystals. Transmission electron microscope (TEM) observations after anneal found a clear dependence of the crystallization rate on the pillar size as well as the LTO thickness. The crystallization rate was lower for pillars with thicker LTO spacers, while for the same LTO thickness the crystallization rate was lower for pillars with narrower width. A model based on the stress in the pillars is proposed to explain this dependence. This model suggests some methods to control the nickel-induced crystallization process and achieve higher quality Si nanocrystals.


Author(s):  
И.Е. Меркулова ◽  
А.О. Замчий ◽  
Н.А. Лунев ◽  
В.О. Константинов ◽  
Е.А. Баранов -=SUP=-1-=/SUP=-

In this work, the kinetics of aluminum-induced crystallization (AIC) of non-stoichiometric silicon oxide a-SiO0.25 was investigated for annealing temperatures of 370, 385 and 400 °C, as a result of which thin films of polycrystalline silicon were obtained. It is shown that for low annealing temperatures, the surface morphology of the crystalline material is represented by dendric structures corresponding to the growth model with diffusion-limited aggregation. In addition, with an increase in the annealing temperature, the nucleation density increases from 3 to 53 mm–2. From the Arrhenius plot, the activation energy of the AIC process of a-SiO0.25 was obtained for the first time, which was 3.7±0.4 eV.


1998 ◽  
Vol 508 ◽  
Author(s):  
Sang-Hyun Park ◽  
Seung-Ik Jun ◽  
Chan-Jae Lee ◽  
Yong-Ho Yang ◽  
Duck-Kyun Choi

AbstractThere have been many reports on the low temperature crystallization of amorphous silicon films by introducing a trace amount of metal impurity for low temperature poly-Si TFTs applications. MIC (Metal Induced Crystallization) uses various metals, to lower crystallization temperature. In this study, a new crystallization method called FALC (Field Aided Lateral Crystallization) in which an electric field is applied during the crystallization was explored. Among possible alloying elements with Si, Ni and Al were selected to compare the effects of these impurities on the FALC.A trace of Ni lowered the crystallization temperature of a-Si down to 5001C and induced lateral crystal growth along the electric field into the metal free region. But Al exhibited no such effect. A new crystallization method, FALC, showed considerably enhanced speed of lateral crystallization and a strong preferred orientation in crystallized Si-films.


2010 ◽  
Vol 663-665 ◽  
pp. 654-657
Author(s):  
Guang Wei Wang ◽  
Hong Xing Zheng ◽  
Su Ying Yao ◽  
Feng Shan Zhang

Amorphous silicon (a-Si) film crystallized by Ni-induced lateral crystallization under static electric field was analyzed. It has been demonstrated that Ni-induced lateral crystallization of a-Si is directional with electric field. Moreover, there exists a critical value of electric field strength, below which the rate of Ni-induced lateral crystallization of a-Si increases remarkably with the increase of field strength, while above which the rate will decrease instead. This phenomenon can be interpreted well based on electromigration effect.


2002 ◽  
Vol 715 ◽  
Author(s):  
Leila Rezaee ◽  
Aarash Akhavan ◽  
Shamsoddin Mohajerzadeh ◽  
Ali Khakifirooz

AbstractLow temperature lateral growth of amorphous silicon films has been achieved on thin flexible glasses using ultra-violet assisted metal-induced crystallization technique. 125μm ordinary glass substrate is sputter-coated with 1500Å chromium and a 1000Å SiN layer, respectively. 1000Å Si film was deposited using e-beam evaporation at a temperature of 350°C. Equally spaced dots of nickel pads with 140μm separation were used as seed of crystallization of a-Si layer. Crystallinity of the samples was studied using XRD, SEM and optical microscopy. Some crystallographic etchants were used to develop the crystal orientations for SEM analysis. Based on this study, a lateral growth rate of 2μm/hr is obtained at a temperature of 380°C. Activation energy of 1.4 to 1.5eV is extracted for this UV-assisted MILC process.


Sign in / Sign up

Export Citation Format

Share Document