Effect of Parameters on the Mechanical Behavior of Core Strands: Experimental, Numerical and Statistical Study

2019 ◽  
Vol 820 ◽  
pp. 104-117 ◽  
Author(s):  
Abdeljalil Jikal ◽  
Hassan Chaffoui ◽  
Mohamed El Ghorba

The cables are widely used in mechanical, electrical and civil engineering applications, as they are flexible and highly resistant. In this paper, the behavior of the elastic limit of straight central core strands is studied. In this study, we focus on the elastic limit’s behavior of straight central core strands. That is, we investigate 27 cores with different configurations. They generally consist of 7 wires (1+6) belonging to wire ropes of type 19x7 subjected to static axial loads. The numerical study is performed using finite element method (FEM). The main results are compared with experimental data. Finally, to determinate the impact of three parameters: the basic material constituting the strands, the winding angle of wires and the diameter of strands on the yield strength of the core strands, we apply a design of experiments (DOE) analysis by YATES’ method.

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski ◽  
Damian Mrówczyński ◽  
Radosław Jędrzejczak

Corrugated cardboard is an ecological material, mainly because, in addition to virgin cellulose fibers also the fibers recovered during recycling process are used in its production. However, the use of recycled fibers causes slight deterioration of the mechanical properties of the corrugated board. In addition, converting processes such as printing, die-cutting, lamination, etc. cause micro-damage in the corrugated cardboard layers. In this work, the focus is precisely on the crushing of corrugated cardboard. A series of laboratory experiments were conducted, in which the different types of single-walled corrugated cardboards were pressed in a fully controlled manner to check the impact of the crush on the basic material parameters. The amount of crushing (with a precision of 10 micrometers) was controlled by a precise FEMat device, for crushing the corrugated board in the range from 10 to 70 % of its original thickness. In this study, the influence of crushing on bending, twisting and shear stiffness as well as a residual thickness and edge crush resistance of corrugated board was investigated. Then, a procedure based on a numerical homogenization, taking into account a partial delamination in the corrugated layers to determine the degraded material stiffness was proposed. Finally, using the empirical-numerical method, a simplified calculation model of corrugated cardboard was derived, which satisfactorily reflects the experimental results.


Author(s):  
Zheng Luo ◽  
Wang Yinhui

The pendulum impact tests were carried out on one RC frame column and four RC free-standing columns. The effect of axial compression ratio and reinforcement ratio on the impact resistance of columns were compared by means of dynamic time curves of framed and freestanding columns under impact. The test results show that with the same impact load, though the presence of axial loads can play a positive role (e.g., reducing the residual displacement), it may lead to more severe local damage. Also, compared with free-standing columns, the frame column can be considered as a protective structure for its greater lateral stiffness and stronger crashworthiness. The corresponding finite element models are developed,and the influence of the axial loads on cross section force responses under impact excitation is deeply explored. The axial loads can significantly affect the distribution of the moment, the shear force, and also the damage for the column.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3203
Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski ◽  
Damian Mrówczyński ◽  
Radosław Jędrzejczak

Corrugated cardboard is an ecological material, mainly because, in addition to virgin cellulose fibers also the fibers recovered during recycling process are used in its production. However, the use of recycled fibers causes slight deterioration of the mechanical properties of the corrugated board. In addition, converting processes such as printing, die-cutting, lamination, etc. cause micro-damage in the corrugated cardboard layers. In this work, the focus is precisely on the crushing of corrugated cardboard. A series of laboratory experiments were conducted, in which the different types of single-walled corrugated cardboards were pressed in a fully controlled manner to check the impact of the crush on the basic material parameters. The amount of crushing (with a precision of 10 micrometers) was controlled by a precise FEMat device, for crushing the corrugated board in the range from 10 to 70% of its original thickness. In this study, the influence of crushing on bending, twisting and shear stiffness as well as a residual thickness and edge crush resistance of corrugated board was investigated. Then, a procedure based on a numerical homogenization, taking into account a partial delamination in the corrugated layers to determine the degraded material stiffness was proposed. Finally, using the empirical-numerical method, a simplified calculation model of corrugated cardboard was derived, which satisfactorily reflects the experimental results.


2004 ◽  
Vol 34 (136) ◽  
pp. 339-356
Author(s):  
Tobias Wölfle ◽  
Oliver Schöller

Under the term “Hilfe zur Arbeit” (aid for work) the federal law of social welfare subsumes all kinds of labour disciplining instruments. First, the paper shows the historical connection of welfare and labour disciplining mechanisms in the context of different periods within capitalist development. In a second step, against the background of historical experiences, we will analyse the trends of “Hilfe zur Arbeit” during the past two decades. It will be shown that by the rise of unemployment, the impact of labour disciplining aspects of “Hilfe zur Arbeit” has increased both on the federal and on the municipal level. For this reason the leverage of the liberal paradigm would take place even in the core of social rights.


Author(s):  
Patrícia Rossini ◽  
Jennifer Stromer-Galley

Political conversation is at the heart of democratic societies, and it is an important precursor of political engagement. As society has become intertwined with the communication infrastructure of the Internet, we need to understand its uses and the implications of those uses for democracy. This chapter provides an overview of the core topics of scholarly concern around online citizen deliberation, focusing on three key areas of research: the standards of quality of communication and the normative stance on citizen deliberation online; the impact and importance of digital platforms in structuring political talk; and the differences between formal and informal political talk spaces. After providing a critical review of these three major areas of research, we outline directions for future research on online citizen deliberation.


2021 ◽  
pp. 109963622110338
Author(s):  
Yury Solyaev ◽  
Arseniy Babaytsev ◽  
Anastasia Ustenko ◽  
Andrey Ripetskiy ◽  
Alexander Volkov

Mechanical performance of 3d-printed polyamide sandwich beams with different type of the lattice cores is investigated. Four variants of the beams are considered, which differ in the type of connections between the elements in the lattice structure of the core. We consider the pantographic-type lattices formed by the two families of inclined beams placed with small offset and connected by stiff joints (variant 1), by hinges (variant 2) and made without joints (variant 3). The fourth type of the core has the standard plane geometry formed by the intersected beams lying in the same plane (variant 4). Experimental tests were performed for the localized indentation loading according to the three-point bending scheme with small span-to-thickness ratio. From the experiments we found that the plane geometry of variant 4 has the highest rigidity and the highest load bearing capacity in the static tests. However, other three variants of the pantographic-type cores (1–3) demonstrate the better performance under the impact loading. The impact strength of such structures are in 3.5–5 times higher than those one of variant 4 with almost the same mass per unit length. This result is validated by using numerical simulations and explained by the decrease of the stress concentration and the stress state triaxiality and also by the delocalization effects that arise in the pantographic-type cores.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Umar Farooque ◽  
Rakesh Ranjan

AbstractIn order to select the heterogeneous multicore fiber (MCF) configuration with ultra-low crosstalk and low peak bending radius, comparative crosstalk analysis have been done for the three possible core configurations, namely, Configuration 1 - different refractive index (R.I.) and different radius, Configuration 2 - different R.I., and Configuration 3 - different radius. Using the coupled mode equation and the simplified expressions of mode coupling coefficient (MCC) for different configurations of heterogeneous cores, the crosstalk performance of all the heterogeneous MCF configurations along with the homogeneous MCF have been investigated analytically with respect to core pitch (D) and fiber bending radius (${R}_{b}$). Further, these expressions of MCC have been extended to obtain the simplified expressions of MCC for the estimation of crosstalk levels in respective trench-assisted (TA) heterogeneous MCF configurations. It is observed from the analysis that in Configuration 1, crosstalk level is lowest and the rate of decrease in the crosstalk with respect to the core pitch is highest compared to the other configurations of heterogeneous MCF. The values of crosstalk obtained analytically have been validated by comparing it with the values obtained from finite element method (FEM) based numerical simulation results. Further, we have investigated the impact of a fixed percent change (5%) in the core parameters (radius and/or R.I.) of one of the core of a homogeneous MCF, to realize the different heterogeneous MCF configurations, on the variations in crosstalk levels, difference in the mode effective refractive index of the core 1 and core 2 ($\Delta {n}_{eff}={n}_{eff1}-{n}_{eff2}$), and the peak bending radius (${R}_{pk}$). For the same percent variations (5%) in the core parameters (radius and/or R.I.) of different configurations of cores (Config. 1-Config. 3), Config. 1 MCF has highest variation in $\Delta {n}_{eff}$ value compared to other configurations of MCF. Further, this highest variation in $\Delta {n}_{eff}$ value of Config. 1 MCF results in smallest peak bending radius. The smaller value of peak bending radius allows MCF to bend into smaller radius. Therefore, Configuration 1 is the potential choice for the design of MCF with smaller peak bending radius and ultra-low crosstalk level compared to the other configurations of SI-heterogeneous MCF.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1425
Author(s):  
Tarek Bouzennada ◽  
Farid Mechighel ◽  
Kaouther Ghachem ◽  
Lioua Kolsi

A 2D-symmetric numerical study of a new design of Nano-Enhanced Phase change material (NEPCM)-filled enclosure is presented in this paper. The enclosure is equipped with an inner tube allowing the circulation of the heat transfer fluid (HTF); n-Octadecane is chosen as phase change material (PCM). Comsol-Multiphysics commercial code was used to solve the governing equations. This study has been performed to examine the heat distribution and melting rate under the influence of the inner-tube position and the concentration of the nanoparticles dispersed in the PCM. The inner tube was located at three different vertical positions and the nanoparticle concentration was varied from 0 to 0.06. The results revealed that both heat transfer/melting rates are improved when the inner tube is located at the bottom region of the enclosure and by increasing the concentration of the nanoparticles. The addition of the nanoparticles enhances the heat transfer due to the considerable increase in conductivity. On the other hand, by placing the tube in the bottom area of the enclosure, the liquid PCM gets a wider space, allowing the intensification of the natural convection.


Sign in / Sign up

Export Citation Format

Share Document