scholarly journals A Review of Low-CO2 Emission Fuels for a Dual-Fuel RCCI Engine

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5067
Author(s):  
Mirosław Karczewski ◽  
Janusz Chojnowski ◽  
Grzegorz Szamrej

This article discusses the problems of exhaust gas emissions in the context of the possibility of their reduction through the use of fuels with hydrogen as an additive or hydrotreatment. These fuels, thanks to their properties, may be a suitable response to more and more demanding restrictions on exhaust emissions. The use of such fuels in reactivity controlled dual fuel engines (RCCI) is currently the most effective way of using them in internal combustion (IC) engines. Low-temperature combustion in this type of engine allows the use of all modern fuels intended for combustion engines with high thermal efficiency. Thermal efficiency higher than in classic engines allows for additional reduction of CO2 emissions. In this work, the research on this subject was compiled, and conclusions were drawn as to further possibilities of popularizing the use of these fuels in a wide spectrum of applications and the prospect of using them on a mass scale.

2016 ◽  
Vol 18 (4) ◽  
pp. 351-365 ◽  
Author(s):  
Martin Wissink ◽  
Rolf Reitz

Low-temperature combustion offers an attractive combination of high thermal efficiency and low NO x and soot formation at moderate engine load. However, the kinetically-controlled nature of low-temperature combustion yields little authority over the rate of heat release, resulting in a tradeoff between load, noise, and thermal efficiency. While several single-fuel strategies have achieved full-load operation through the use of equivalence ratio stratification, they uniformly require retarded combustion phasing to maintain reasonable noise levels, which comes at the expense of thermal efficiency and combustion stability. Previous work has shown that control over heat release can be greatly improved by combining reactivity stratification in the premixed charge with a diffusion-limited injection that occurs after low-temperature heat release, in a strategy called direct dual fuel stratification. While the previous work has shown how the heat release control offered by direct dual fuel stratification differs from other strategies and how it is enabled by the reactivity stratification created by using two fuels, this paper investigates the effects of the diffusion-limited injection. In particular, the influence of fuel selection and the pressure, timing, and duration of the diffusion-limited injection are examined. Diffusion-limited injection fuel type had a large impact on soot formation, but no appreciable effect on performance or other emissions. Increasing injection pressure was observed to decrease filter smoke number exponentially while improving combustion efficiency. The timing and duration of the diffusion-limited injection offered precise control over the heat release event, but the operating space was limited by a tradeoff between NO x and soot.


Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121372
Author(s):  
Deivanayagam Hariharan ◽  
Sundar Rajan Krishnan ◽  
Kalyan Kumar Srinivasan ◽  
Aamir Sohail

2018 ◽  
Vol 21 (8) ◽  
pp. 1426-1440 ◽  
Author(s):  
Buyu Wang ◽  
Michael Pamminger ◽  
Ryan Vojtech ◽  
Thomas Wallner

Gasoline compression ignition using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low-temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high-temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high-temperature gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high-temperature gasoline compression ignition combustion with port and direct injection. Engine testing was conducted at an engine speed of 1038 r/min and brake mean effective pressure of 1.4 MPa for three injection strategies, late pilot injection, early pilot injection, and port/direct fuel injection. The impact on engine performance and emissions with respect to varying the combustion phasing were quantified within this study. At the same combustion phasing, early pilot injection and port/direct fuel injection had an earlier start of combustion and higher maximum pressure rise rates than late pilot injection attributable to more premixed fuel from pilot or port injection; however, brake thermal efficiencies were higher with late pilot injection due to reduced heat transfer. Early pilot injection also exhibited the highest cylinder-to-cylinder variations due to differences in injector behavior as well as the spray/wall interactions affecting mixing and evaporation process. Overall, peak brake thermal efficiency of 46.1% and 46% for late pilot injection and port/direct fuel injection was achieved comparable to diesel baseline (45.9%), while early pilot injection showed the lowest brake thermal efficiency (45.3%).


Author(s):  
Deivanayagam Hariharan ◽  
Mozhgan Rahimi Boldaji ◽  
Ziming Yan ◽  
Brian Gainey ◽  
Benjamin Lawler

Abstract Reactivity Control Compression Ignition (RCCI) is a Low-Temperature Combustion (LTC) technique that have been proposed to meet the current demand for high thermal efficiency and low engine-out emissions. However, its requirement of two separate fuel systems has been one of its major challenges in the last decade. This leads to the single-fuel RCCI concept, where the secondary fuel is generated from the primary fuel through CPOX reformation. After studying three different fuels, diesel was found to be the best candidate for the reformation process, where the reformed gaseous fuel (with lower reactivity) was used as the secondary fuel and the parent diesel fuel (with higher reactivity) was used as the primary fuel. Previously, the effects of the start of injection (SOI) timing of diesel and the energy-based blend ratio were studied in detail. In this study, the effect of piston profile and the injector included angles were experimentally studied using both conventional fuel pairs and reformate RCCI. A validated CFD model was also used for a better understanding of the experimental trends. Comparing a re-entrant bowl piston with a shallow bowl piston, the latter showed better thermal efficiency, regardless of the fuel combination, due to its 10% lower surface area for the heat transfer. Comparing the 150-degree and 60-degree included angle, the latter showed better combustion efficiency, regardless of the fuel combination, due to its earlier combustion phasing (at constant SOI timing) as the fuel spray targets better region of the cylinder.


Author(s):  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
Kalyan K. Srinivasan

Abstract Dual fuel diesel-methane low temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen (NOx) and particulate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual fuel LTC typically exhibit poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting the methane combustion once the process is initiated by the first one. In this work, diesel-methane dual fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas surrogate). A multidimensional model is first validated in comparison with experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 CAD and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion emissions are investigated, again showing good agreement with experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ∼30% from baseline. Furthermore, it is shown that post-injection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.


Author(s):  
Andrea Aniello ◽  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
...  

Over the last few decades, emissions regulations for internal combustion engines have become increasingly restrictive, pushing researchers around the world to exploit innovative propulsion solutions. Among them, the dual fuel low temperature combustion (LTC) strategy has proven capable of reducing fuel consumption and while meeting emissions regulations for oxides of nitrogen (NOx) and particulate matter (PM) without problematic aftertreatment systems. However, further investigations are still needed to reduce engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions as well as to extend the operational range and to further improve the performance and efficiency of dual-fuel engines. In this scenario, the present study focuses on numerical simulation of fumigated methane-diesel dual fuel LTC in a single-cylinder research engine (SCRE) operating at low load and high methane percent energy substitution (PES). Results are validated against experimental cylinder pressure and apparent heat release rate (AHRR) data. A 3D full-cylinder RANS simulation is used to thoroughly understand the influence of the start of injection (SOI) of diesel fuel on the overall combustion behavior, clarifying the causes of AHRR transition from two-stage AHRR at late SOIs to single-stage AHRR at early SOIs, low temperature heat release (LTHR) behavior, as well as high HC production. The numerical campaign shows that it is crucial to reliably represent the interaction between the diesel spray and the in-cylinder charge to match both local and overall methane energy fraction, which in turn, ensures a proper representation of the whole combustion. To that aim, even a slight deviation (∼3%) of the trapped mass or of the thermodynamic conditions would compromise the numerical accuracy, highlighting the importance of properly capturing all the phenomena occurring during the engine cycle. The comparison between numerical and experimental AHRR curves shows the capability of the numerical framework proposed to correctly represent the dual-fuel combustion process, including low temperature heat release (LTHR) and the transition from two-stage to single stage AHRR with advancing SOI. The numerical simulations allow for quantitative evaluation of the residence time of vapor-phase diesel fuel inside the combustion chamber and at the same time tracking the evolution of local diesel mass fraction during ignition delay — showing their influence on the LTHR phenomena. Oxidation regions of diesel and ignition points of methane are also displayed for each case, clarifying the reasons for the observed differences in combustion evolution at different SOIs.


Sign in / Sign up

Export Citation Format

Share Document