scholarly journals Densification of Wood—Influence on Mechanical and Chemical Properties when 11 Naturally Occurring Substances in Wood Are Mixed with Beech and Pine

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5895
Author(s):  
Stefan Frodeson ◽  
Anthony Ike Anukam ◽  
Jonas Berghel ◽  
Magnus Ståhl ◽  
Rasika Lasanthi Kudahettige Nilsson ◽  
...  

The need to increase the use of renewable biomasses for energy supply, such as fuel pellets is significant. However, different types of biomasses have different mechanical properties to be pelletized, which entails a limitation in available raw materials for pellet producers. Within this study eleven different pure substances from biomasses were separately mixed with European beech and Scots pine, to identify its impact on the densification process. Beech and pine pellets were used as control materials against their corresponding pellets mixed with substances representing: cellulose, hemicelluloses, other polysaccharides, lignin, protein, and extractives. The mechanical properties were investigated as well as FT-IR and SEM analyses on the pellets. The results showed that the addition of the substances xylan and galactan created the hardest pellets for both pine and beech and that adding extractives to wood affects pine more than beech in relation to hardness. The FT-IR data could not provide clear explanations as to the variation in hardness and springback behavior through the identification of major functional groups in each pellet. It can be concluded that biomass residues rich in xylan and galactan increase pellet quality in terms of strength and durability without affecting the production process.

Author(s):  
A. Suresh Kumar ◽  
M. Muthukannan ◽  
R. Kanniga Devi ◽  
K. Arunkumar ◽  
A. Chithambar Ganesh

Abstract Incinerated Bio-Medical Waste Ash (IBWA) is toxic waste material with broad potential (cancer, genetic risk, premature death, permanent disease) to inflict severe health damage for the atmosphere and humans. This waste is disposed of as landfills which contaminate the underground water and environment. The effective way of disposal of IBWA is by utilizing it as a building material which can reduce the hazardous toxic materials. The use of Geopolymer Concrete (GPC) combined with IBWA as a substitute for Ground Granulated Blast Furnace Slag (GGBS) has been researched for its ability to create a new type of Green Concrete. The physical and chemical properties were observed for the raw materials. IBWA was used at 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50% replacement by weight for GGBS. Mixing proportions were 1:2.21:3.48 respectively for GGBS, Manufacturing Sand (M-sand), and coarse aggregate. Fresh properties and Mechanical properties were examined on all specimens. The findings show an increase in the setting time and flow of concrete and a decrease in density with improved utilization of IBWA. On the other hand, IBWA replacement for GGBS enhanced the mechanical properties. These results revealed that IBWA could be partially replaced as source material for Geopolymer Concrete. This research may contribute to the reduction of dangerous IBWA as a building material.


2021 ◽  
Vol 103 (3) ◽  
pp. 83-92
Author(s):  
V.V. Glukhikh ◽  
◽  
A.E. Shkuro ◽  
P.S. Krivonogov ◽  
◽  
...  

The results of TPLC scientific research, practical experience of their preparation, and application as of 2016 are presented in eight volumes of the “Handbook of Composites from Renewable Materials” (2017, John Wiley & Sons, Inc.). This article provides an analysis of books and articles with open access to the Science Direct (Elsevier) database for the period 2017–2020 to assess the biodegradation rate and physical and mechanical properties of polymer composites with lignocellulosic fillers. The production and use of polymer composites with a thermoplastic polymer matrix and lignocellulosic fillers (TPLC) have significant ecological and eco- nomic prospects since waste biomass from forests, agriculture, and polymers obtained from petroleum raw materials can be used for their production. However, depending on the TPLC application area, there are opposite requirements for the biodegradation rate. For the use in construction and medicine materials and products must have a minimum biodegradation rate. Materials and products for single-use packaging must have the necessary biodegradability potential and have an adjusted biodegradation rate in soil, water, compost environment. Research results show that the properties of TPLC can be significantly influenced not only by the physical but also by the chemical structure of all components of these composites. The chemical properties of polymers, fillers, additives for various purposes can affect their industrial production efficiency.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 91
Author(s):  
P. Sudheer ◽  
Dr S. Chandramouli

The present study is based on nano technology and came up with the idea of introducing nanoparticles in the raw materials used for construction. Nano materials are available in three principal shapes 0, 1 and 2 Dimensional nanoparticles. 0D and 1D nanofibers are such as carbon nanotubes and nanosilica compounds. This study has investigated the physical and chemical properties of graphite and graphene compound and its applicability in construction industry.  Graphene has created interest as it is believed to improve the strength of concrete allowing the possibility of controlling properties of concrete. In this work graphene is used as a reinforcing additive in cement-based mortar and concrete. Own Graphene compound is prepared using conventional graphite and concentrated hydrogen peroxide in the laboratory due to the unavailability of graphene. As a part of microstructural investigation, SEM and EDS analysis on graphite and graphene compounds before and after implementation are carried out in the laboratory. Then the two compounds are replaced as a part of small percentage in cement mortar cubes casted for various proportions. The mechanical properties of cement-based composites are studied after incorporating of graphite and graphene compounds at low dosages in concrete and then the results are compared. 


2018 ◽  
Vol 9 ◽  
pp. 801-808 ◽  
Author(s):  
Sharali Malik ◽  
Felicite M Ruddock ◽  
Adam H Dowling ◽  
Kevin Byrne ◽  
Wolfgang Schmitt ◽  
...  

Pure graphene in the form of few-layer graphene (FLG) – 1 to 6 layers – is biocompatible and non-cytotoxic. This makes FLG an ideal material to incorporate into dental polymers to increase their strength and durability. It is well known that graphene has high mechanical strength and has been shown to enhance the mechanical, physical and chemical properties of biomaterials. However, for commercial applicability, methods to produce larger than lab-scale quantities of graphene are required. Here, we present a simple method to make large quantities of FLG starting with commercially available multi-layer graphene (MLG). This FLG material was then used to fabricate graphene dental-polymer composites. The resultant graphene-modified composites show that low concentrations of graphene (ca. 0.2 wt %) lead to enhanced performance improvement in physio-mechanical properties – the mean compressive strength increased by 27% and the mean compressive modulus increased by 22%. Herein we report a new, cheap and simple method to make large quantities of few-layer graphene which was then incorporated into a common dental polymer to fabricate graphene-composites which shows very promising mechanical properties.


Wood Research ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 437-448
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Nikolay Neykov ◽  
Ľuboš Krišťák

In this work, wet-process fibreboards (hardboards) were produced in the laboratory using industrial wood fibres of the species European beech (Fagus sylvatica L.) and Turkey oak (Quercus cerris L.) at the total volume of 40%, and white poplar (Populus alba L.) at 60% volume. The effects of hot pressing pressure (varied from 3.3 MPa to 5.3 MPa) and pressing time (from 255 s to 355 s) on the physical and mechanical properties of hardboards were investigated and optimal values of the parameters for fulfilling the European standard requirements were determined. It was concluded that hardboards with acceptable physical and mechanical properties may be produced from 60% poplar wood waste and residues, combined with 40% hardwood raw materials (beech and oak) by regulating the hot pressing regime only, i.e. pressure and pressing time. The following minimum parameters for producing hardboards from mixed hardwood tree species were determined: a pressure of 4.6 MPa and a pressing time of 280 s.


2021 ◽  
Vol 28 (8) ◽  
Author(s):  
T. Kovács ◽  
L. Simon-Stőger ◽  
B. Heller ◽  
Cs. Varga

AbstractPolymer blending has been a simple and efficient way for designing and controlling the performance of polymeric materials using easily available types. Both polycarbonate and polyamide have excellent mechanical properties and thermal stability but their disadvantages such as limited chemical or water resistance can be eliminate by tailoring them. Main difficulties in processing of PC/PA blends are the poor compatibility and high moisture adsorption capacity of the two raw materials complicating processing and also deteriorating mechanical properties of the products. Compatibilizing additives such as olefin-maleic-anhydride copolymer based compounds used in the experimental work can help to overcome the abovementioned difficulties. To determine the processing conditions of the raw materials several drying temperatures have been tested and thermal degradation has been examined by FT-IR spectroscopy. Experimental compatibilizing additives based on an olefin-maleic-anhydride copolymer have been investigated to enhance mechanical properties of the blends prepared by extrusion moulding. Mechanical, rheological, SEM and FT-IR measurements have been performed and at least one additive has been found to be efficient in improving selected properties.


BioResources ◽  
2006 ◽  
Vol 1 (2) ◽  
pp. 257-269 ◽  
Author(s):  
Chun Bei Huang ◽  
Robert Jeng ◽  
Mohini Sain ◽  
Bradley A. Saville ◽  
Martin Hubbes

Microbial modification of starch with Ophiostoma spp . was investigated, with the purpose of developing a novel packaging material for the food or pharmaceutical industries. Various starch sources, such as tapioca, potato, corn, rice and amylopectin were tested as raw materials. The initial screening demonstrated that tapioca and potato starch had better performance for biopolymer production. The yield was about 85%. Preliminary characterization of the modified biopolymer was also conducted. Following microbial conversion, the percentage of molecules with at least a Mw of 10M Daltons increased from 25% to 89% after 3 days, confirming that the modification increased the weight of the starch polymer. Fourier Transform Infrared (FT-IR) revealed changes in the chemical structure of the starch after the modification. Both pure starches and the modified biopolymers were cast into films and tested for mechanical properties. The tensile tests showed that after treatment with the fungus, the peak stress and modulus of the films increased about 10 and 40 times, respectively. Also, the water barrier property was improved. Therefore, microbial modification positively impacted proper-ties relevant to the proposed applications . Although the role of the fungus in the modification and the function-property relationship of the biopolymer are not yet completely clear, the results of this study show promise for development of a novel biopolymer that competes with existing packaging materials.


2013 ◽  
Vol 787 ◽  
pp. 286-290 ◽  
Author(s):  
A.A. Zaldívar-Cadena ◽  
I. Díaz-Peña ◽  
J.R. González-López ◽  
F. Vázquez-Acosta ◽  
A. Cruz-López ◽  
...  

Currently, thermal energy generation through coal combustion produces ash particles which cause serious environmental problems and which are known as Fly Ash (FA). FA main components are oxides of silicon, aluminum, iron, calcium and magnesium in addition, toxic metals such as arsenic and cobalt. The use of fly ash as a cement replacement material increases long term strength and durability of concrete. In this work, samples were prepared by replacing cement by ground fly ash in 10, 20 and 30% by weight. The characterization of raw materials and microstructure was obtained by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The final results showed that the grinding process significantly improves the mechanical properties of all samples when compared replacing a mortar made with cement by ground fly ash and the reference samples without added fly ash. The beneficial effect of the ground fly ash can increase the use of this product in precast concrete industry.


2016 ◽  
Vol 368 ◽  
pp. 178-181 ◽  
Author(s):  
Martin Bednarik ◽  
David Manas ◽  
Miroslav Maňas ◽  
Ales Mizera ◽  
Vojtech Šenkeřík

It was found in this study, that radiation crosslinking has a positive effect on the mechanical properties of selected type polyamide. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. The main purpose of this paper has been to determine the effect of radiation crosslinking on the tensile strength and elongation of PA 66 (filled with 30 % glass fibers). These properties were examined in dependence on the dosage of the ionizing electron beam radiation (non-irradiated samples and those irradiated by dosage 66 and 132 kGy were compared) and on the test temperature (23, 50, 80, and 110 oC). Radiation cross-linking of PA 66 results in increased mechanical strength, and decreased of elongation. As an addition, the increased surface microhardness of polyamide was found.


2021 ◽  
Author(s):  
Minghui Xu ◽  
Xianming Lu ◽  
Ning Liu ◽  
Qian Zhang ◽  
Hongchang Mo ◽  
...  

Abstract In order to enhance the application properties of GAP in solid propellant, an energetic copolyurethane binder, (poly[3,3-bis(2,2,2-trifluoro-ethoxymethyl)oxetane] glycol-block-glycidylazide polymer (PBFMO-b-GAP) was developed. The PBFMO-b-GAP was prepared using poly[3,3-bis(2,2,2-trifluoro-ethoxymethyl)oxetane] glycol (PBFMO) which preparing from cationic polymerization and GAP as the raw materials, TDI as the coupling agent via a prepolymer process. The molecular structure of copolyurethane was confirmed by FT-IR, NMR, GPC. The impact sensitivity, mechanical properties and thermal behavior of PBFMO-b-GAP were studied by drop weight test, XPS, tensile test, SEM, DSC and TG/DTG respectively. The results proved that the introduction of fluoropolymer can evidently reduce the sensitivity of GAP based polyurethanes and enhance their mechanical behavior (the tensile strength up to 5.75MPa with a breaking elongation of 1660 %). Also, PBFMO-b-GAP exhibited an excellent resistance to thermal decomposition up to 200°C and good compatibility with Al and HMX. Cook-off test was used to investigate the reactive of copolyurethanes and Al, the results indicated that the copolyurethanes could react with Al efficiently and release significantly more heat. Therefore, the energetic copolyurethanes may serve as promising energetic binders for future propellant formulations.


Sign in / Sign up

Export Citation Format

Share Document