scholarly journals Catalytic Temperature Effects on Conversion Efficiency of PM2.5 and Gaseous Emissions from Rice Husk Combustion

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6131
Author(s):  
Emmanuel Owoicho Abah ◽  
Tofael Ahamed ◽  
Ryozo Noguchi

Most studies on honeycomb catalysts have been conducted using simulation models and exhaust experiments from automobiles. Very few monolithic catalyst studies have been applied to the agricultural sector, especially the catalyst exhaust system for flue purification from the biomass industry. The importance of exhaust gas purification and particulate removal from biomass power plants has become critical for evaluating the performance and environmental sustainability of biomass combustion. This is one of the first studies to investigate the performance of honeycomb catalysts for the oxidation of flue (PM2.5), (CO), and (SO2) from a rice husk briquette combustion system. The experimental setup comprised a fixed-bed electric furnace, the catalyst, an aerosol sampler, and a flue gas analyzer. Rice husk (0.1 g/mL density) and rice husk briquettes (0.8 g/mL density), were burned at 600–1000 °C for 3 min. From the results, the catalyst CO conversion rate was 100% at the optimum heated temperatures of 427.4–490.3 °C. At these temperatures, the inhibition effect of the chemisorbed CO was significantly minimized, enhancing the adsorption of oxygen, which reacted with CO to form CO2. However, SO2 oxidation was lower than that of CO because platinum-based catalysts are generally more attracted to CO in the presence of oxygen. The emission of PM2.5 decreased from its uncatalyzed-value (1169.9 mg/m3 and 1572.2 mg/m3) to its catalyzed values (18.9 mg/m3 and 170.1 mg/m3). This is a significant result in ensuring cleaner production of energy from rice husk.

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1707
Author(s):  
Raquel Villena-Ruiz ◽  
Andrés Honrubia-Escribano ◽  
Francisco Jiménez-Buendía ◽  
Ángel Molina-García ◽  
Emilio Gómez-Lázaro

Wind power is positioned as one of the fastest-growing energy sources today, while also being a mature technology with a strong capacity for creating employment and guaranteeing environmental sustainability. However, the stochastic nature of wind may affect the integration of power plants into power systems and the availability of generation capacity. In this sense, as in the case of conventional power plants, wind power installations should be able to help maintain power system stability and reliability. To help achieve this objective, a significant number of countries have developed so-called grid interconnection agreements. These are designed to define the technical and behavioral requirements that wind power installations, as well as other power plants, must comply with when seeking connection to the national network. These documents also detail the tasks that should be conducted to certify such installations, so these can be commercially exploited. These certification processes allow countries to assess wind turbine and wind power plant simulation models. These models can then be used to estimate and simulate wind power performance under a variety of scenarios. Within this framework, and with a particular focus on the new Spanish grid code, the present paper addresses the validation process of dynamic wind turbine models followed in three countries—Spain, Germany and South Africa. In these three countries, and as a novel option, it has been proposed that these models form part of the commissioning and certification processes of wind power plants.


Author(s):  
M. W. Horner ◽  
R. K. Alff ◽  
J. C. Corman

Simplified integrated gasification combined cycle (IGCC) power plants offer attractive advantages for improving the performance of coal to electricity systems. This plant configuration, which utilizes a coal gasifier, hot gas cleanup system, and gas turbine combined cycle, has the potential to reduce both capital costs for equipment and fuel costs through improved efficiency. This paper reports the results of fuel supply and gas turbine testing on actual hot low-Btu coal gas. A pilot-scale advanced fixed-bed gasifier has been modified to supply hot coal gas to a particulate removal cyclone and then to a gas turbine simulator. The hot gas is combusted in a General Electric MS6000 combustor developed for low-Btu gas fuel. The combusted product flows through a MS6000 turbine first-stage nozzle sector. The exhaust gases from the nozzle sector pass over air-cooled cylindrical ash deposition pin specimens and then into a water quench exhaust system. Extensive instrumentation and sampling provisions are utilized to characterize the fuel gas, the combustion gases, and the ash deposits formed on turbine components. Two regimes of nozzle metal surface temperatures have been investigated by separate testing performed including 500–600 °F with water-cooled and 1500–1650 °F with air-cooled nozzle sectors. Results from the test program have provided key data related to fuel gas cleanup and the tolerance of gas turbine hot gas path parts to the products of combustion from coal-derived fuels.


Author(s):  
Djalma Dias da Silveira ◽  
Renato Paula de Andrade ◽  
Airton Lui´s Heck

Pipeline construction in rock soils demands an extreme care, under a constructive point-of-view, specially regarding a possible damage to the pipeline coating. Irregular pieces of rock (result of rock blasting) can contribute to this damage. Actual methodologies can be resumed in the utilization of selected soil (extracted from natural areas) as “padding” layer and also to cover the pipeline. Another methodology is mechanical protection utilization (special sleeves and wood grids). This paper proposes the utilization of biomass wastes after burning in Biomass Fire Power Plants as “padding” and “covering” agent, in substitution to the soil extracted from natural areas. The waste studied is produced after the burning of rice husk wastes that are burned in power plants in operation at the South Region of Brazil. Laboratory analyses were conducted and the results are presented and discussed, in terms of pipeline integrity and soil quality effects. Main results of this work are related to the possibility of cost reduction by the utilization of waste as the “padding” and “covering” agents in pipeline construction, as well as the selected soil extraction areas conservation, that can be used to another economical or environmental activity. Another result can be the reducing of mechanical protection elements used during the construction step. Finally, this paper contributes to the development of new initiatives related to alternative materials using in pipeline construction routines, based on cost reduction × environmental sustainability binomial, that can result in more sustainable gas pipeline construction projects.


2015 ◽  
Vol 7 (11) ◽  
pp. 15262-15283 ◽  
Author(s):  
Lorenzo Bruscoli ◽  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Duccio Tempesti

2021 ◽  
Vol 13 (4) ◽  
pp. 2027
Author(s):  
Md. Emdadul Hoque ◽  
Fazlur Rashid ◽  
Muhammad Aziz

Synthetic gas generated from the gasification of biomass feedstocks is one of the clean and sustainable energy sources. In this work, a fixed-bed downdraft gasifier was used to perform the gasification on a lab-scale of rice husk, sawdust, and coconut shell. The aim of this work is to find and compare the synthetic gas generation characteristics and prospects of sawdust and coconut shell with rice husk. A temperature range of 650–900 °C was used to conduct gasification of these three biomass feedstocks. The feed rate of rice husk, sawdust, and coconut shell was 3–5 kg/h, while the airflow rate was 2–3 m3/h. Experimental results show that the highest generated quantity of methane (vol.%) in synthetic gas was achieved by using coconut shell than sawdust and rice husk. It also shows that hydrogen production was higher in the gasification of coconut shell than sawdust and rice husk. In addition, emission generations in coconut shell gasification are lower than rice husk although emissions of rice husk gasification are even lower than fossil fuel. Rice husk, sawdust, and coconut shell are cost-effective biomass sources in Bangladesh. Therefore, the outcomes of this paper can be used to provide clean and economic energy sources for the near future.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1509
Author(s):  
Roxana Voicu-Dorobanțu ◽  
Clara Volintiru ◽  
Maria-Floriana Popescu ◽  
Vlad Nerău ◽  
George Ștefan

The process of reaching carbon neutrality by 2050 and cutting CO2 emissions by 2030 by 55% compared to 1990 as per the EU Green Deal is highly complex. The energy mix must be changed to ensure long-term environmental sustainability, mainly by closing down coal sites, while preserving the energy-intensive short-term economic growth, ensuring social equity, and opening opportunities for regions diminishing in population and potential. Romania is currently in the position of deciding the optimal way forward in this challenging societal shift while morphing to evidence-based policy-making and anticipatory governance, mainly in its two coal-mining regions. This article provides possible future scenarios for tackling this complex issue in Romania through a three-pronged, staggered, methodology: (1) clustering Romania with other similar countries from the point of view of the Just Transition efforts (i.e., the energy mix and the socio-economic parameters), (2) analyzing Romania’s potential evolution of the energy mix from the point of the thermal efficiency of two major power plants (CEH and CEO) and the systemic energy losses, and (3) providing insights on the socio-economic context (economic development and labor market transformations, including the component on the effects on vulnerable consumers) of the central coal regions in Romania.


Author(s):  
Kavitha E ◽  
Karthik S ◽  
Eithya B ◽  
Seenirajan M

The quantity of fly ash produced from thermal power plants in India is approximately 80 million tons each year, and its percentage utilization is less than 10%. An attempt has been made to utilize these cheaper materials in concrete production. This thesis aims at investigating the characteristics of fresh concrete and various strengths of hardened concrete made with various mineral admixtures such as fly ash. GGBFS, silica fume. Rice husk ash along with polypropylene fibres in various proportions.  M20 grade concrete is considered for experimental studies with 53grade Ordinary Portland Cement blended with varying percentages of mineral admixtures. The maximum size of coarse aggregate used is 20mm.  Various mineral admixtures such as fly ash. GGBFS.Silica fume. Rice Husk Ash were added concrete in various percentages by partially replacing cement and the optimum percentage of the mineral admixtures will be found.  Based on the obtained values, the admixture with maximum mechanical strength is determined and to this polypropylene fibre is added by varying 0 to 0.5 % by weight of cement to the mix.  The test results obtained were compared and discussed with conventional concrete.


Sign in / Sign up

Export Citation Format

Share Document