scholarly journals Specific Methane Yield of Wetland Biomass in Dry and Wet Fermentation Technologies

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8373
Author(s):  
Robert Czubaszek ◽  
Agnieszka Wysocka-Czubaszek ◽  
Wendelin Wichtmann ◽  
Piotr Banaszuk

Our study evaluated the specific methane yield (SMY) of selected wetland species subjected to wet and dry anaerobic digestion: Carex elata All. (CE), a mixture (~50/50) of Carex elata All. and Carex acutiformis L. (CA), Phragmites australis (Cav.) Trin. ex Steud. (PA), Typha latifolia L. (TL) and Phalaris arundinacea L. (PAr). Plants were harvested in late September, and therefore, the study material was characterised by high lignin content. The highest lignin content (36.40 ± 1.04% TS) was observed in TL, while the lowest (16.03 ± 1.54% TS) was found in CA. PAr was characterised by the highest hemicellulose content (37.55 ± 1.04% TS), while the lowest (19.22 ± 1.22% TS) was observed in TL. Cellulose content was comparable in almost all plant species studied and ranged from 25.32 ± 1.48% TS to 29.37 ± 0.87% TS, except in PAr (16.90 ± 1.29% TS). The methane production potential differed significantly among species and anaerobic digestion (AD) technologies. The lowest SMY was observed for CE (121 ± 28 NL kgVS−1) with dry fermentation (D–F) technology, while the SMY of CA was the highest for both technologies, 275 ± 3 NL kgVS–1 with wet fermentation (W–F) technology and 228 ± 1 NL kgVS–1 with D–F technology. The results revealed that paludi-biomass could be used as a substrate in both AD technologies; however, biogas production was more effective for W–F. Nonetheless, the higher methane content in the biogas and the lower energy consumption of technological processes for D–F suggest that the final amount of energy remains similar for both technologies. The yield is critical in energy production by the AD of wetland plants; therefore, a promising source of feedstock for biogas production could be biomass from rewetted and previously drained areas, which are usually more productive than natural habitats.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2311 ◽  
Author(s):  
Spyridon Achinas ◽  
Yu Li ◽  
Vasileios Achinas ◽  
Gerrit Jan Willem Euverink

This article intends to promote the usage of potato peels as efficient substrate for the anaerobic digestion process for energy recovery and waste abatement. This study examined the performance of anaerobic digestion of potato peels in different inoculum-to-substrate ratios. In addition, the impact of combined treatment with cow manure and pretreatment of potato peels was examined. It was found that co-digestion of potato peel waste and cow manure yielded up to 237.4 mL CH4/g VSadded, whereas the maximum methane yield from the mono-digestion of potato peels was 217.8 mL CH4/g VSadded. Comparing the co-digestion to mono-digestion of potato peels, co-digestion in PPW/CM ratio of 60:40 increased the methane yield by 10%. In addition, grinding and acid hydrolysis applied to potato peels were positively effective in increasing the methane amount reaching 260.3 and 283.4 mL CH4/g VSadded respectively. Likewise, compared to untreated potato peels, pretreatment led to an elevation of the methane amount by 9% and 17% respectively and alleviated the kinetics of biogas production.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3573 ◽  
Author(s):  
Meneses-Quelal Orlando ◽  
Velázquez-Martí Borja

The objective of this research is to present a review of the current technologies and pretreatments used in the fermentation of cow, pig and poultry manure. Pretreatment techniques were classified into physical, chemical, physicochemical, and biological groups. Various aspects of these different pretreatment approaches are discussed in this review. The advantages and disadvantages of its applicability are highlighted since the effects of pretreatments are complex and generally depend on the characteristics of the animal manure and the operational parameters. Biological pretreatments were shown to improve methane production from animal manure by 74%, chemical pretreatments by 45%, heat pretreatments by 41% and physical pretreatments by 30%. In general, pretreatments improve anaerobic digestion of the lignocellulosic content of animal manure and, therefore, increase methane yield.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 539 ◽  
Author(s):  
Renfei Li ◽  
Wenbing Tan ◽  
Xinyu Zhao ◽  
Qiuling Dang ◽  
Qidao Song ◽  
...  

Wood waste generated during the tree felling and processing is a rich, green, and renewable lignocellulosic biomass. However, an effective method to apply wood waste in anaerobic digestion is lacking. The high carbon to nitrogen (C/N) ratio and rich lignin content of wood waste are the major limiting factors for high biogas production. NaOH pre-treatment for lignocellulosic biomass is a promising approach to weaken the adverse effect of complex crystalline cellulosic structure on biogas production in anaerobic digestion, and the synergistic integration of lignocellulosic biomass with low C/N ratio biomass in anaerobic digestion is a logical option to balance the excessive C/N ratio. Here, we assessed the improvement of methane production of wood waste in anaerobic digestion by NaOH pretreatment, co-digestion technique, and their combination. The results showed that the methane yield of the single digestion of wood waste was increased by 38.5% after NaOH pretreatment compared with the untreated wood waste. The methane production of the co-digestion of wood waste and pig manure was higher than that of the single digestion of wood waste and had nonsignificant difference with the single-digestion of pig manure. The methane yield of the co-digestion of wood waste pretreated with NaOH and pig manure was increased by 75.8% than that of the untreated wood waste. The findings indicated that wood waste as a sustainable biomass source has considerable potential to achieve high biogas production in anaerobic digestion.


2018 ◽  
Vol 31 ◽  
pp. 02007 ◽  
Author(s):  
Hashfi Hawali Abdul Matin ◽  
Hadiyanto

An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 296 ◽  
Author(s):  
Georgia Antonopoulou ◽  
Dimitrios Vayenas ◽  
Gerasimos Lyberatos

Various pretreatment methods, such as thermal, alkaline and acid, were applied on grass lawn (GL) waste and the effect of each pretreatment method on the Biochemical Methane Potential was evaluated for two options, namely using the whole slurry resulting from pretreatment or the separate solid and liquid fractions obtained. In addition, the effect of each pretreatment on carbohydrate solubilization and lignocellulossic content fractionation (to cellulose, hemicellulose, lignin) was also evaluated. The experimental results showed that the methane yield was enhanced with alkaline pretreatment and, the higher the NaOH concentration (20 g/100 gTotal Solids (TS)), the higher was the methane yield observed (427.07 L CH4/kg Volatile Solids (VS), which was almost 25.7% higher than the BMP of the untreated GL). Comparing the BMP obtained under the two options, i.e., that of the whole pretreatment slurry with the sum of the BMPs of both fractions, it was found that direct anaerobic digestion without separation of the pretreated biomass was favored, in almost all cases. A preliminary energy balance and economic assessment indicated that the process could be sustainable, leading to a positive net heat energy only when using a more concentrated pretreated slurry (i.e., 20% organic loading), or when applying NaOH pretreatment at a lower chemical loading.


2012 ◽  
Vol 485 ◽  
pp. 306-309
Author(s):  
Li Hong Wang ◽  
Qun Hui Wang ◽  
Wei Wei Cai

Solid-state anaerobic digestion (SSAD) of distiller’s grains (DG) and kitchen waste (KW) for biogas was investigated. Six DG to KW ratios of 10/1, 8/1, 6/1, 4/1, 1/0, and 0/1 was used. The results showed that in 48 digestion days the co-digestion with DG to KW ratio of 8:1 obtained the highest methane yield of 159.74mL/gTS, TS and VS reductions of 58.7% and 71.8%, hemicellulase, cellulose and lignin reductions of 46.7%, 45.4% and 4.0%. Compared to mono-digestions of DG or KW, co-digestion of DG and FW had a good synergistic effect. It indicated that SSAD of cellulosic-based waste and food waste could be one of the options for efficient biogas production and waste treatment


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Hongyan Ren ◽  
Nan Jiang ◽  
Tao Wang ◽  
M. Mubashar Omar ◽  
Wenquan Ruan ◽  
...  

In order to enhance biogas production in the anaerobic digestion of duckweed, and duckweed with excess sludge as single and mixed substrates, the effects of hot alkali pretreatment and variation of the ratio of substrate to inoculum were investigated. The results showed that the delayed stage of anaerobic gas generation could be shortened when the two substrates were mixed during methane production, to give a cumulative gas yield of 2963 mL, which was 11% higher than the calculated value for the complementary substrate. The methane content was 57%, which was 13% higher than that from the duckweed group and 9% higher than from the excess sludge group. Furthermore, the methane yield was improved by 8% after the duckweed was pretreated with hot alkali. When the substrate to inoculum ratio was 1:1, the maximum biogas production of 3309 mL was achieved, with a methane yield of 1883 mL which, respectively, increases of 151 mL and 304 mL compared with the worst group (1:2.5).


Author(s):  
R. Nagipe da Silva Paulo ◽  
A. Viana Gusmão Vieira ◽  
P. Rodrigues

Aquatic macrophytes are important components of aquatic habitats. However, the overgrowth of aquatic plants can cause severe problems for the management of bodies of water. As a result, these plants must be removed and disposed of as waste. However, the usage of this biomass as a substrate in biogas plants would appear to be more beneficial. The present work deals with the anaerobic digestion (AD) of macrophytes species that cause inconvenience to power generation at hydroelectric plant in Minas Gerais - Brazil. The study examines the following macrophytes species; Salvinia molest Oxycarium cubense, Eichhornia crassipes, Pistia stratiotes and Brachiaria. The experiments were carried out as stainless steel reactor with temperature, agitation and pressure control. As pre-treatment of macrophytes was used heat treatment at 120°C and pressure of 1.6 atm. The maximum methane content was 60% during 40 days digestion time, for Brachiaria of higher lignin content. The result obtained, mainly with Brachiaria demonstrates the efficiency of pre-treatment for the lignocellulosic samples.


Sign in / Sign up

Export Citation Format

Share Document