scholarly journals Efficiency of Energy Consumption between Reinforced Concrete Structure and Cross-Laminated Timber Based Hybrid Structure in East Asian Cities

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 165
Author(s):  
Meng-Ting Tsai ◽  
Wei-Ting Lin

From the environmental perspective, wooden structures are favorable insulators that are suitable for carbon fixation and wooden-related products are considered the most sustainable material. Research has indicated that wooden structures have superior energy-saving performance compared to reinforced concrete (RC) structures. In this study, a CLT-based hybrid structure system that potentially improves the efficiency of energy consumption is proposed. The proposed hybrid structure system, which preserved original RC beams, columns and replaced CLT floors and walls, has less building weight compared to the original RC building. Additionally, less energy required for the manufacturing of building materials in the renovation of the aged building is achieved, compared to building a new CLT building. The energy consumptions for buildings with heights of 10 stories were compared. CLT and RC were selected as benchmark building materials to compare the energy-saving efficiencies with the proposed hybrid structure system. In addition, to examine the energy consumption differences at different latitudes, the energy consumptions in Taipei, Tokyo, Harbin, and Singapore were compared as well. The simulation results indicate the proposed hybrid structure system, which comprises RC beams and columns and CLT floors and walls, and has an energy-saving efficiency close to that of a CLT structure, by approximately 3–5% higher, however, had a superior energy consumption performance to the RC structure. In general, the proposed hybrid structure system can be effectively used for old building renewal in the selected Asian cities.

2020 ◽  
Vol 10 (5) ◽  
pp. 1582 ◽  
Author(s):  
Haibo Guo ◽  
Siyuan Zhou ◽  
Tongyu Qin ◽  
Lu Huang ◽  
Wenjie Song ◽  
...  

The aim of this research is to investigate the energy sustainability of cross-laminated timber (CLT) and straw residential buildings in the Cold and Severe Cold Regions of China. In the study, three building materials, namely reinforced concrete (RC), CLT, and straw bale, are used separately to design the building envelope in reference residential buildings in different climate zones. The energy consumption during the operation phase of these buildings is then simulated using Integrated Environmental Solutions—Virtual Environment software (IES-VE). The results show that both CLT and straw buildings are more efficient than reinforced concrete with a reduction in energy consumption during the operational phase. Overall, the calculated heating energy-saving ratios for CLT buildings in Hailar, Harbin, Urumchi, Lanzhou, and Beijing are 3.04%, 7.39%, 7.43%, 12.69%, and 13.41%, respectively, when compared with RC. The calculated energy-saving ratios for heating in straw buildings in comparison with RC in these cities are 8.04%, 22.09%, 22.17%, 33.02%, and 34.28%, respectively. The results also reveal that a south orientation of the main building facade results in approximately 5% to 7% energy reduction in comparison with east or west orientations, and as the building height increases, energy consumption decreases gradually. Although RC is the most frequently used building material in Cold and Severe Cold regions in China, as bio-based building materials, there is great potential to promote CLT and straw bale construction in view of the energy sustainability features.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6305
Author(s):  
Haibo Guo ◽  
Lu Huang ◽  
Wenjie Song ◽  
Xinyue Wang ◽  
Hongnan Wang ◽  
...  

As the climate changed in recent years, an increase in summer indoor temperatures in severe cold and cold regions of China has started to affect thermal comfort. However, the local design standard for energy efficiency does not recognize this phenomenon. This paper reports the potential overheating phenomenon in residential buildings and examines the rationale for the current thermal designs adopted in severe cold and cold regions of China. In this study, the two most commonly used building materials, reinforced concrete (RC) and cross laminated timber (CLT), are used separately in the design of an 18-story residential building envelope located in six different cities in the severe cold and cold regions. The energy consumption and indoor operative temperatures during the operation of these buildings are simulated using Integrated Environmental Solutions Virtual Environment (IES VE). The results demonstrate that both the RC and the CLT buildings experience varying degrees of overheating in any climate subregion. The CLT buildings have longer overheating hours compared to the RC buildings, especially in the cold regions. The results also indicate that for apartments on higher stories, the cooling energy consumption and indoor temperature also increase gradually. The research results suggest that the local design standard for energy efficiency needs to be adjusted by adding thermal design methods for summer to reduce the periods of overheating.


2020 ◽  
Vol 12 (4) ◽  
pp. 1566 ◽  
Author(s):  
Yu Dong ◽  
Tongyu Qin ◽  
Siyuan Zhou ◽  
Lu Huang ◽  
Rui Bo ◽  
...  

Many stadiums will be built in China in the next few decades due to increasing public interest in physical exercise and the incentive policies issued by the government under its National Fitness Program. This paper investigates the energy saving and carbon reduction performance of timber stadiums in China in comparison with stadiums constructed using conventional building materials, based on both life cycle energy assessment (LCEA) and life cycle carbon assessment (LCCA). The authors select five representative cities in five climate zones in China as the simulation environment, simulate energy use in the operation phase of stadiums constructed from reinforced concrete (RC) and timber, and compare the RC and timber stadiums in terms of their life cycle energy consumption and carbon emissions. The LCEA results reveal that the energy saving potential afforded by timber stadiums is 11.05%, 12.14%, 8.15%, 4.61% and 4.62% lower than those of RC buildings in “severely cold,” “cold,” “hot summer, cold winter,” “hot summer, warm winter,” and “temperate” regions, respectively. The LCCA results demonstrate that the carbon emissions of timber stadiums are 15.85%, 15.86%, 18.88%, 19.22% and 22.47% lower than those of RC buildings for the regions above, respectively. This demonstrates that in China, timber stadiums have better energy conservation and carbon reduction potential than RC stadiums, based on life cycle assessment. Thus, policy makers are advised to encourage the promotion of timber stadiums in China to achieve the goal of sustainable energy development for public buildings.


2011 ◽  
Vol 224 ◽  
pp. 229-234
Author(s):  
Lin Lin ◽  
Bing Xun Ren ◽  
Dao Dian Lu

Taking Changangtang ancient village in Guangzhou as a case, this paper investigated the village location, the village layout, as well as building structures and building materials regarding their contributions to energy saving. It is found that the location and the surrounding of artificial river system form natural energy-saving environment, the overall layout of “comb pattern” complies to the local predominant wind direction in summer which go further in reducing the energy consumption in building, the courtyard enhances the ventilation and lighting, and the "Black brick with loam brick inside " form of material for wall, materials used for roofs, and dimensions of doors and windows all contribute to energy-saving.


2014 ◽  
Vol 672-674 ◽  
pp. 1828-1832
Author(s):  
Hai Yang Ni ◽  
Xiao Qin Zhu ◽  
Jin Hu ◽  
Yu Bie ◽  
Liang Chen ◽  
...  

Phase change building materials are a category of building materials with the integration of structure and function, which can be achieved by phase change materials composite with the traditional building materials. They have such characteristics as the improvement of energy saving efficiency in buildings, the decrease of heating energy consumption and the adjustment of thermal comfort in the room environment etc. Therefore, phase change building materials are one of the most efficient means of energy utilizations, which has important significance for promoting their investigation and applications of energy saving in buildings.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Feiran Xue ◽  
Jingyuan Zhao

Under the trend of building green and comfortable development, effective control of building energy consumption has become one of the problems that countries are actively facing to solve. People’s demand for residential buildings has changed from the past survival type to a comfortable and livable type. The high level of heating energy consumption is worthy of in-depth study. In order to reduce energy consumption, realize the mapping of energy-saving concepts in buildings, and understand the energy consumption of different building materials and the influence of external factors on human thermal comfort, this book has conducted research on building thermal comfort based on energy-saving concepts. First of all, this article introduces the concept and application mode of energy-saving concepts in buildings and the concept of thermal comfort and the SET index of standard effective temperature, including the two-node model and the algorithm involved in the Fanger heat balance equation. In the experimental part, a model based on the concept of energy saving was designed to predict and analyze the energy consumption and thermal comfort effects of the building. In the analysis part, a comprehensive analysis of the effects of temperature, humidity, wind speed, and gender on thermal comfort, methods to improve thermal comfort, cumulative load changes with the heat transfer coefficient of windows, and the effects of windows of different materials on energy consumption was performed. At the same temperature, the wind speed is different, and the degree of heat sensation is also different. When the wind speed is 0.18 m/s and the temperature is 28°C, the thermal sensation is 0.32, and the human sensation is close to neutral. When the wind speed increases to 0.72 m/s, the heat sensation drops to −0.45, and the human body feels neutral and cool. It can be seen that the increase in wind speed has a certain compensation effect on the thermal sensation of the human body. When the wind speed does not change, increase the air temperature. For example, when the wind speed is 0.72 m/s, the temperature is 28°C, and the thermal sensation is −0.45, and when the temperature is increased to 29°C, the thermal sensation is 0.08, which shows that the temperature is improving the thermal sensation of the human body which has a certain offsetting effect. By studying the thermal comfort of buildings based on energy-saving concepts, it is possible to obtain the effect of external factors on thermal comfort, thereby optimizing building materials and using building materials with lower heat transfer coefficients to reduce heating energy consumption.


2011 ◽  
Vol 71-78 ◽  
pp. 3297-3302
Author(s):  
Hong Jun Jia ◽  
Yun Chen

The building energy consumption is one of the biggest components of energy consumption in China. Based on the building life cycle energy consumption theory, this paper proposed a modified model, which extra considered the influence of building planning, design and building materials’ recycle to energy consumption. This paper analyzed every building stage’s energy consumption and provided saving measures. According to the present situation of China, this paper explored new ideas on building energy saving.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Tong Yifei ◽  
Tang Zhaohui ◽  
Mei Song ◽  
Shen Guomin ◽  
Gu Feng

Crane is a mechanical device, used widely to move materials in modern production. It is reported that the energy consumptions of China are at least 5–8 times of other developing countries. Thus, energy consumption becomes an unavoidable topic. There are several reasons influencing the energy loss, and the camber of the girder is the one not to be neglected. In this paper, the problem of the deflections induced by the moving payload in the girder of overhead travelling crane is examined. The evaluation of a camber giving a counterdeflection of the girder is proposed in order to get minimum energy consumptions for trolley to move along a nonstraight support. To this aim, probabilistic payload distributions are considered instead of fixed or rated loads involved in other researches. Taking 50/10 t bridge crane as a research object, the probability loads are determined by analysis of load distribution density functions. According to load distribution, camber design under different probability loads is discussed in detail as well as energy consumptions distribution. The research results provide the design reference of reasonable camber to obtain the least energy consumption for climbing corresponding to differentP0; thus energy-saving design can be achieved.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8470
Author(s):  
Leonardo Leoni ◽  
Alessandra Cantini ◽  
Filippo De Carlo ◽  
Marcello Salvio ◽  
Chiara Martini ◽  
...  

The foundry industry is regarded as one of the most energy-intensive industrial sector due to its energy consumption up to 9 MWh/ton of produced metal. As a result, many companies are trying to increase the energy efficiency of their foundry plants. Since many energy-saving technologies are proposed by manufacturers and the literature, choosing the most appropriate one is a difficult task. Moreover, being updated with the available energy-saving solutions is complicated because of the quick technology advances. Consequently, this paper aims at investigating the recent and future opportunities and investments for reducing the energy consumptions of the technologies of Italian foundry companies. Additionally, it aims at presenting a list of available technological solutions validated by Italian experts. To this end, the Energy Audits developed by 231 plants were analyzed to extract the implemented and planned interventions. Furthermore, the economic data available within the Energy Audits were studied to determine the advantages of a given technological solutions compared to the others. It emerged that the companies are strongly investing in increasing the efficiency of the auxiliary systems such as compressors and motors. The outcomes of this study can assist both researchers and energy managers in choosing the most appropriate energy-saving solutions.


2013 ◽  
Vol 700 ◽  
pp. 89-92
Author(s):  
Juan Li ◽  
Ying Pan

Early in the 20th century 70's, the concept of energy-saving building was officially proposed. The core of energy-saving buildings is to reduce energy consumption and enhance energy efficiency in buildings. However, with the continued rapid growth of China's economic and urbanization high-rise buildings have become the mainstream of the building industry. So, the research on energy-saving design in high-rise buildings in advanced structure becomes the hot issue of general interest. Many advanced structures and building materials have constantly developed, and have been used in high-rise buildings energy efficiency design. This paper summarizes and prospects the current situation of energy-saving design in chinas high-rise building, and also provides a reference for hoping the energy-saving design can be geared to international standards better.


Sign in / Sign up

Export Citation Format

Share Document