scholarly journals A Low-Cost Monitoring Platform and Visual Interface to Analyse Thermal Comfort in Smart Building Applications Using a Citizen–Scientist Strategy

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 564
Author(s):  
Giacomo Chiesa ◽  
Andrea Avignone ◽  
Tommaso Carluccio

Smart building issues are critical for current energy and comfort managing aspects in built environments. Nevertheless, the diffusion of smart monitoring solutions via user-friendly graphical interfaces is still an ongoing issue subject to the need to diffuse a smart building culture and a low-cost series of solutions. This paper proposes a new low-cost IoT sensor network, exploiting Raspberry Pi and Arduino platforms, for collecting real-time data and evaluating specific thermal comfort indicators (PMV and PPD). The overall architecture was accordingly designed, including the hardware setup, the back-end and the Android user interface. Eventually, three distinct prototyping platforms were deployed for initial testing of the general system, and we analysed the obtained results for different building typologies and seasonal periods, based on collected data and users’ preferences. This work is part of a large educational and citizen science activity.

Author(s):  
Jing Li ◽  
Dingyong Yu ◽  
Huaxing Liu

The passive acoustic-based wave measurement via hydrophones is presented in this paper. It has the potential to measure non-intrusively, implement with low cost and with higher resolution. Details of experiments, real-time data recording and processing are described respectively. Particularly, the portable data acquisition system based on virtual instrument technique is designed to make the in situ measurement convenient and user-friendly. Special emphasis is put on FFT filtering technique to band pass the signal fast and efficiently. The key wave parameters, i.e. the mean wave period and the significant wave height, can be obtained from the comparatively safe and stable underwater by means of submerged hydrophones. Considering the pressure sensor has been widely used in the ocean wave measurement, it is deployed simultaneously to test the feasibility of the new system. The result shows that the present measuring system can give satisfactory measurement of significant wave heights and average wave periods in shallow water despite of the little deviation.


Author(s):  
Ryan Ganesha Calibra ◽  
Irfan Ardiansah ◽  
Nurpilihan Bafdal

Water quality is very important for plant’s growth and development. Some of the important part of the water qualities are TDS(Total Dissolved Solid), EC(Electrical Conductivity), pH(Acidity). Cultivation inside a greenhouse provides some benefits but also have some deficiency, such as lack of soil nutrition because most plants inside greenhouse uses non soil growing media. To overcome the deficiency, An automated and remote system is needed to ease the controlling of water quality and nutrition feeding to the plant. This study aims to create low-cost greenhouse water quality monitoring that automatically display the real time data on a website. This research is done by using an engineering design methods. This system can be integrated with auto-pot watering system . The result shows that the system can adjust the TDS and pH as programmed, which are TDS= 1000-1200, and pH =5.5-6.5(these are recommended needs for Tomato plant). The TDS sensor in this reseach have the limitation of reading 0~1500ppm.


2021 ◽  
Vol 20 ◽  
pp. 176-181
Author(s):  
Debalina Banerjee ◽  
Akashjyoti Banik ◽  
Sanjib Kumar Singh ◽  
Kandarpa Kumar Sarma

Surveillance operations designed to be carried out by a robotic vehicle for entry into an area of higher risks and perform hazardous tasks form the core of this work. The system is integrated with a robotic vehicle that is controlled through a virtual interface and well supported by live video streaming. Here, the motion detection sensor is used as a simple but powerful human presence detector and alarm trigger. Also, the design has a metal detector and gas detecting sensor that can provide precaution against potential landmines present in the operations area and presence of chemicals, high energy materials or poisonous gases on regular and event-based occurrence. The real-time data of the gas sensor is stored in the local machine and also uses a speech recognition system developed using Raspberry Pi microcomputer to detect audio signals. It generates routine alarms on special/unknown/ first time patterns of audio threats. The system is designed using low-cost components.


2021 ◽  
Vol 25 (Special) ◽  
pp. 1-181-1-188
Author(s):  
Hadeel H. Azeez ◽  
◽  
Mahmood Z. Abdullah ◽  

Urban planning for smart cities requires collecting big real-time data, specially geolocation data from GPS sensors to use in many services like finding the best location for new schools so this data must be stored in a secure place with low cost and because the storage services offered from different cloud providers like Google, Amazon Web Service, Azure, etc., is not free. For these reasons, this study proposed Internet of Things (IoT) cloud architecture using Raspberry Pi model B+ as a cloud server with MySQL database services to provide free and secure storage at a low cost. The main contributions of this study lie in the Constrained Application Protocol (CoAP) server hosted in raspberry Pi to offer services in the proposed architecture of the IoT cloud with different scenarios to know the proposed architecture's ability for handling many user requests per second in terms of standard division, average elapsed time, error rate, throughput, and a number of real stored data in the database. AS a result, the proposed architecture handled 150 requests per second in real-time with an elapsed time of 1186 milliseconds without any error or data loss.


2012 ◽  
Vol 44 (2) ◽  
pp. 75-93
Author(s):  
Peter Mortensen

This essay takes its cue from second-wave ecocriticism and from recent scholarly interest in the “appropriate technology” movement that evolved during the 1960s and 1970s in California and elsewhere. “Appropriate technology” (or AT) refers to a loosely-knit group of writers, engineers and designers active in the years around 1970, and more generally to the counterculture’s promotion, development and application of technologies that were small-scale, low-cost, user-friendly, human-empowering and environmentally sound. Focusing on two roughly contemporary but now largely forgotten American texts Sidney Goldfarb’s lyric poem “Solar-Heated-Rhombic-Dodecahedron” (1969) and Gurney Norman’s novel Divine Right’s Trip (1971)—I consider how “hip” literary writers contributed to eco-technological discourse and argue for the 1960s counterculture’s relevance to present-day ecological concerns. Goldfarb’s and Norman’s texts interest me because they conceptualize iconic 1960s technologies—especially the Buckminster Fuller-inspired geodesic dome and the Volkswagen van—not as inherently alienating machines but as tools of profound individual, social and environmental transformation. Synthesizing antimodernist back-to-nature desires with modernist enthusiasm for (certain kinds of) machinery, these texts adumbrate a humanity- and modernity-centered post-wilderness model of environmentalism that resonates with the dilemmas that we face in our increasingly resource-impoverished, rapidly warming and densely populated world.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3784
Author(s):  
Cristina Stolojescu-Crisan ◽  
Calin Crisan ◽  
Bogdan-Petru Butunoi

Home automation has achieved a lot of popularity in recent years, as day-to-day life is getting simpler due to the rapid growth of technology. Almost everything has become digitalized and automatic. In this paper, a system for interconnecting sensors, actuators, and other data sources with the purpose of multiple home automations is proposed. The system is called qToggle and works by leveraging the power of a flexible and powerful Application Programming Interface (API), which represents the foundation of a simple and common communication scheme. The devices used by qToggle are usually sensors or actuators with an upstream network connection implementing the qToggle API. Most devices used by qToggle are based on ESP8266/ESP8285 chips and/or on Raspberry Pi boards. A smartphone application has been developed that allows users to control a series of home appliances and sensors. The qToggle system is user friendly, flexible, and can be further developed by using different devices and add-ons.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 915
Author(s):  
Gözde Dursun ◽  
Muhammad Umer ◽  
Bernd Markert ◽  
Marcus Stoffel

(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


Sign in / Sign up

Export Citation Format

Share Document