scholarly journals Ectomycorrhizal Community on Norway Spruce Seedlings Following Bark Beetle Infestation

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 740 ◽  
Author(s):  
Petra Veselá ◽  
Martina Vašutová ◽  
Karolína Hofmannová ◽  
Magda Edwards-Jonášová ◽  
Pavel Cudlín

Ectomycorrhizal (ECM) fungi importantly influence seedling growth, nutrition, and survival and create an extensive mycelial network interconnecting tree species and enabling resource redistribution. Due to their symbiotic relationship with trees, they are impacted by forest disturbances, which are of increasing relevance due to climate change. The effect of disturbance on seedling colonization and their morphology is still largely unknown. Seedling growth parameters and the ECM fungal assemblage on the roots of Norway spruce (Picea abies (L.) H. Karst.) seedlings were assessed in mature spruce forests attacked and destroyed by bark beetle and in a mature non-attacked forest as a reference. We did not detect significant differences in number of ECM species on seedling roots among forest types, but ECM species composition changed; Tylospora fibrillosa (Burt) Donk, Meliniomyces variabilis Hambl. & Sigler, and Phialocephala fortinii C.J.K. Wang & H.E. Wilcox were characteristic species in the forest destroyed by bark beetle, whereas Lactarius, Cortinarius, and Russula were in the mature forest. Forest type further significantly influenced the height, root length, and root collar thickness of seedlings and the proportion of exploration types of mycorrhizae.

2021 ◽  
Author(s):  
Erica Jaakkola ◽  
Anna Maria Jönsson ◽  
Per-Ola Olsson ◽  
Maj-Lena Linderson ◽  
Thomas Holst

<p>Tree killing by spruce bark beetles (<em>Ips typographus</em>) is one of the main disturbances to Norway spruce (<em>Picea abies</em>) forests in Europe and the risk of outbreaks is amplified by climate change with effects such as increased risk of storm felling, tree drought stress and an additional generation of spruce bark beetles per year<sup>[1]</sup>. The warm and dry summer of 2018 triggered large outbreaks in Sweden, the increased outbreaks are still ongoing and affected about 8 million m<sup>3</sup> forest in 2020<sup>[2]</sup>. This is the so far highest record of trees killed by the spruce bark beetle in a single year in Sweden<sup>[2]</sup>. In 1990-2010, the spruce bark beetle killed on average 150 000 m<sup>3</sup> forest per year in southern Sweden<sup>[3]</sup>. Bark beetles normally seek and attack Norway spruces with lowered defense, i.e. trees that are wind-felled or experience prolonged drought stress<sup>[4]</sup>. However, as the number of bark beetle outbreaks increase, the risk of attacks on healthy trees also increase<sup>[5]</sup>. This causes a higher threat to forest industry, and lowers the possibilities to mitigate climate change in terms of potential decreases in carbon uptake if the forests die<sup>[4,5]</sup>. Norway spruce trees normally defend themselves by drenching the beetles in resin<sup>[6]</sup>. The resin in turn contains different biogenic volatile organic compounds (BVOCs), which can vary if the spruce is attacked by bark beetles or not<sup> [4,6]</sup>. The most abundant group of terpenoids (isoprene, monoterpenes and sesquiterpenes), is most commonly emitted from conifers, such as Norway spruce<sup>[7,8]</sup>. The aim of this study was to enable a better understanding of the direct defense mechanisms of spruce trees by quantifying BVOC emissions and its composition from individual trees under attack</p><p>To analyze the bark beetles’ impact on Norway spruce trees a method was developed using tree trunk chambers and adsorbent tubes. This enables direct measurements of the production of BVOCs from individual trees. Three different sites in Sweden, with different environmental conditions were used for the study and samples were collected throughout the growing season of 2019. After sampling, the tubes were analyzed in a lab using automated thermal desorption coupled to a gas chromatograph and a mass spectrometer to identify BVOC species and their quantity.</p><p>The preliminary results show a strong increase in BVOC emissions from a healthy tree that became infested during the data collection. The finalized results expect to enable better understanding of how spruce trees are affected by insect stress from bark beetles, and if bark beetle infestation will potentially result in increased carbon emission in the form of BVOCs.</p><p><strong>References</strong></p><p>[1] Jönsson et al. (2012). Agricultural and Forest Meteorology 166: 188–200<br>[2] Skogsstyrelsen, (2020). https://via.tt.se/pressmeddelande/miljontals-granar-dodades-av-granbarkborren-2020?publisherId=415163&releaseId=3288473<br>[3] Marini et al. (2017). Ecography, 40(12), 1426–1435.<br>[4] Raffa (1991). Photochemical induction by herbivores. pp. 245-276<strong><br></strong>[5] Seidl, et al. (2014). Nature Climate Change, 4(9), 806-810. <br>[6] Ghimire, et al. (2016). Atmospheric Environment, 126, 145-152.<br>[7] Niinemets, U. and Monson, R. (2013). ISBN 978-94-007-6606-8<br>[8] Kesselmeier, J. and Staudt, M. (1999). Journal of Atmospheric Chemistry, 33(1), pp.23-88</p>


Oecologia ◽  
2012 ◽  
Vol 170 (1) ◽  
pp. 183-198 ◽  
Author(s):  
Christian Schiebe ◽  
Almuth Hammerbacher ◽  
Göran Birgersson ◽  
Johanna Witzell ◽  
Peter E. Brodelius ◽  
...  

2021 ◽  
Vol 25 (6) ◽  
pp. 969-975
Author(s):  
M.K. Peter ◽  
SIN Agera ◽  
J.I. Amonum

This study investigated the effects of potting media on seed germination and early seedling growth of Pterocarpus erinaceus Poir at the Forestry Nursery in Jos, Nigeria. Using Completely Randomized Design (CRD) with three replicates, laboratory-tested soil samples, top soil, sharp sand, sharp sand + top soil, sharp sand + top soil + cow dung and sharp sand + top soil + poultry droppings were used in various combinations to assess the growth parameters of P. erinaceus (germination percentage, emergence, plant height, number of leaves, length of leaves and stem diameter) for 12 weeks. Descriptive and inferential statistics were employed to analyze collected data. Result indicated that sharp sand + top soil + poultry droppings had the highest nitrogen concentration (2.19%), sharp sand + top soil + cow dung (2.07%), sharp sand + top soil (1.50%), top soil (0.72%) and Sharp sand (0.38%). Potting media with poultry droppings recorded an overall higher percentage germination of 42.9% by the end of the germination period. Analysis of variance (ANOVA) of collected data on combined soil aggregate on growth parameters indicated a significant (p<0.05) difference in plant height, number of leaves, leaf length and stem diameter. Potting with poultry dropping gave the best potting media growth results when compared to other treatments that enhanced seed germination and seedling growth of P. erinaceus. This superior observation of the poultry droppings incorporated potting mixtures over the cow dung provides an outstanding potentials to enhance P. erinaceus plantation establishment. Consequently, recommended for raising seedlings in the nursery as well as ensuring sustainable management.


Author(s):  
Gamze Kaya

The study aimed to evaluate the use of germination indices as a screening tool for salinity tolerance during germination and early seedling growth of pepper cultivars, and to distinguish the potential for genetic responses to salt tolerance. In the study, the seeds of seven pepper cultivars were germinated at increasing NaCl levels of 5, 10, 15 and 20 dS/m and distilled water as the control treatment for 14 days. Germination percentage (GP), mean germination time (MGT), germination index (GI), germination stress tolerance index (GSTI), seedling length (SL), seedling fresh weight (SFW) and vigor index (VI) were investigated. Results showed that germination percentage decreased with increasing NaCl levels while the highest germination percentage at 20 dS/m was 92% in BT Burdem with no significant reduction. Seedling growth of pepper cultivars was severely inhibited by increasing salinity stress. SFW was depressed depending on reduction in SL due to increasing NaCl. BT-Burli and BT İnce Sivri were the most tolerant cultivars to NaCl and they were used for genetic resources towards salinity. Seedling growth was much more sensitive to salinity than germination because of the highest percent reduction in seedling growth parameters. Among the parameters, GSTI gave the highest significant correlation coefficient with SL and SFW; indicating that it would be useful for estimating seedling growth. It was concluded that genotypic variation was observed among pepper cultivars for salinity tolerance and GSTI could be used for a predictor for salinity tolerance.


2021 ◽  
Vol 25 (8) ◽  
pp. 1547-1550
Author(s):  
O.A. Majekodunmi ◽  
I.O. Abiola ◽  
A.M. Aderemi ◽  
J.O. Adedipe ◽  
O.G. Ogunwale ◽  
...  

This study investigated the effect of sowing media on the seed germination and subsequent seedling growth of Senna fistula L. Treatments were T1 (Top soil), T2 (River sand), T3 (Grinded coconut husk) and T4 (weathered sawdust), replicated two times for seed germination. The treatments were arranged in a Completely Randomized Design (CRD) and the data generated was subjected to analysis of variance (ANOVA) at 5% level of significance, while mean separation where appropriate was done using Least Significant Difference (LSD). The different sowing media used had positive effect on the seed emergence, the seeds planted in river sand had the highest emergence percentage of 70%. The different sowing media used did not have any significant effect on the vegetative growth parameters, statistically, they had same effect on the parameters measured. Nonetheless, seedlings from river sand produced highest number of leave (20.4), seedlings from topsoil produced highest plant height and largest leaf area of l0.62 cm and 37.l4 cm2 respectively. The seedlings from weathered sawdust produced the highest stem diameter of 0.79 mm, while seedlings from grinded coconut husk had lowest values for all the growth parameters measured. Therefore, it is recommended that river sand or weathered sawdust can be used to propagate Senna fistula seeds.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Eric B. Kouam ◽  
Simon M. Ndo ◽  
Marie S. Mandou ◽  
Asafor H. Chotangui ◽  
Christopher M. Tankou

AbstractThis study was carried out to determine effects of salinity on germination and seedling development of commercially important common bean genotypes in Cameroon. The seeds of eight genotypes were used for both trials. The germination experiments were carried out on petri dishes in the laboratory while early growth trials continued in plastic pots in the screenhouse. Both stages were setup using a randomized complete block design with three replications. Germination and early growth trials of the different genotypes were studied using distilled water as control or osmotic potentials of 50, 100, 150 and 200mM NaCl to study the effects of salinity on germination and seedling growth characteristics. Leaf concentrations of Na+ and K+ were determined. At the germination level, germination percentage, germination index and the coefficient of velocity of germination decreased with increasing salinity while the mean germination time and time to 50% germination increased with increasing level of salt. All the growth variables decreased with increasing salinity with the exception of the root length which was not affected by salinity. It was observed that increasing salinity induced a significant increase in leaf Na+ and substantial reduction in the accumulation of K+ in the leaves. For ions accumulation, germination variables and growth parameters, significant differences at 0.001 probability levels were found among salinity treatments, common bean genotypes and most of their interactions. Significant correlations were found between all germination variables and between most growth parameters. From the effect of salt application, the common bean genotypes namely KEBCB049, KEB-CB053 and Mac-33 were the most tolerant while KEB-CB055 and KEB-CB050 were the most sensitive. The results confirm that there is genotypic variation in salinity tolerance and that the most tolerant genotypes should be further explored in selection programs, with the aim that they should be promoted for cultivation in tropical zones affected by salinity.


2020 ◽  
Author(s):  
Markus Löw ◽  
Koukal Tatjana

Abstract Background Worldwide, forests provide natural resources and ecosystem services. However, forest ecosystems are threatened by increasing forest disturbance dynamics, caused by direct human activities or an altering natural environment. It is decisive to trace the intra- to trans-annual dynamics of these forest ecosystems. National to local forest communities request detailed area-wide maps that delineate forest disturbance dynamics at various spatial scales. Methods We developed a remote sensing based time series analysis (TSA) framework that comprises data access, data management, image pre-processing, and an advanced but flexible TSA. The data basis is a dense time series of multispectral Sentinel-2 images with a spatial resolution of 10 metres. We use a dynamic Savitzky-Golay-filtering approach to reconstruct robust but sensitive phenology courses. Deviations from the latter are further used to derive spatiotemporal information on forest disturbances. In a first case study, we apply the TSA to map forest disturbances directly or indirectly linked to recurring bark beetle infestation in Northern Austria. Finally, we use zonal statistics on different spatial scales to provide aggregated information on the extent of forest disturbances between 2018 and 2019.Results and Conclusion The outcomes are a) individual phenology models and deduced phenology metrics for each 10 metres by 10 metres forest pixel in Austria and b) forest disturbance maps useful to investigate the occurrence, development and extent of bark beetle infestation. The phenology modelling results provide area-wide consistent data, also useful for downstream analyses (e.g. forest type classification). Results of the forest disturbance detection demonstrate that the TSA is capable to systematically delineate disturbed forest areas. Information derived from such a forest monitoring tool is highly relevant for various stakeholders in the forestry sector, either for forest management purposes or for decision-making processes on different levels.


2011 ◽  
Vol 57 (No. 12) ◽  
pp. 555-564 ◽  
Author(s):  
I. Repáč ◽  
J. Vencurik ◽  
M. Balanda

&nbsp;Laboratory-produced alginate-bead inoculum of ectomycorrhizal (ECM) fungi Cortinarius sp. and&nbsp;Gomphidius glutinosus, fungal commercial products ECtovit<sup>&reg; </sup>and Trichomil<sup>&reg;</sup>, bacterial commercial product BactoFil&nbsp;B<sup>&reg;</sup>, and commercial rooting stimulator Vetozen<sup>&reg;</sup> were applied to a peat-perlite (1:2, v:v) rooting substrate of Norway spruce stem cuttings collected from 4-year-old nursery-grown seedlings immediately before the insertion of cuttings into the substrate. The application of beads free of fungi and the substrate without an additive were the other treatments. The cuttings were rooted in vessels (60 cuttings per vessel, 180 per treatment) placed in a glasshouse and arranged in a randomized complete block design. The cuttings were estimated for one growing season (approximately for 26 weeks) after their insertion into the rooting substrate. Rooting % of the cuttings ranged from 45 (mycelium-free beads) to 75 (control) according to treatments, 64 on average. No significant differences among treatments were found in % of ECM morphotypes, total ECM colonization of roots (%), and growth parameters of shoots and roots of the cuttings. The applied microbial additives were not sufficiently efficient to form treatment-related ectomycorrhizas that were formed by naturally occurring ECM fungi. Inoculation by the ECM fungus Cortinarius sp. and application of Trichomil had a partial stimulative effect on the shoot growth of cuttings. Shoot and root growth parameters were not significantly correlated with total ECM colonization, except for a negative dependence of the root number in Trichomil treatment. A higher concentration of K but lower concentrations of Ca and Mg in Ectovit treatment than in the other treatments were detected.&nbsp; &nbsp;


1999 ◽  
Vol 13 (3) ◽  
pp. 530-535 ◽  
Author(s):  
Zhaohu Li ◽  
Robert H. Walker ◽  
Glenn Wehtje ◽  
H. Gary Hancock

Hypocotyl and root length reduction of soybean (Glycine max) seedlings when seeds were exposed to sulfentrazone during germination were used as indices to classify cultivar response to soil-applied sulfentrazone. Seeds of ‘Stonewall’ (sulfentrazone tolerant) and ‘Asgrow 6785’ (sulfentrazone sensitive) were imbibed and allowed to germinate in 0, 1, 5, 10, and 50 ppm aqueous sulfentrazone solutions for 4 d. Hypocotyl and root lengths were reduced in both cultivars, but the reductions were greater for Asgrow 6785 than for Stonewall. Subsequently, the relative sensitivity of 28 cultivars to sulfentrazone was independently determined by two variations of the hypocotyl reduction method (both conducted in the laboratory) and by traditional full-season field evaluation. Results from laboratory and field studies were in agreement for cultivars distinctly sensitive or tolerant to sulfentrazone. However, cultivars with intermediate tolerance in laboratory studies produced variable responses in the field.


Sign in / Sign up

Export Citation Format

Share Document