scholarly journals Projections for Mexico’s Tropical Rainforests Considering Ecological Niche and Climate Change

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Antonio Fidel Santos-Hernández ◽  
Alejandro Ismael Monterroso-Rivas ◽  
Diódoro Granados-Sánchez ◽  
Antonio Villanueva-Morales ◽  
Malinali Santacruz-Carrillo

The tropical rainforest is one of the lushest and most important plant communities in Mexico’s tropical regions, yet its potential distribution has not been studied in current and future climate conditions. The aim of this paper was to propose priority areas for conservation based on ecological niche and species distribution modeling of 22 species with the greatest ecological importance at the climax stage. Geographic records were correlated with bioclimatic temperature and precipitation variables using Maxent and Kuenm software for each species. The best Maxent models were chosen based on statistical significance, complexity and predictive power, and current potential distributions were obtained from these models. Future potential distributions were projected with two climate change scenarios: HADGEM2_ES and GFDL_CM3 models and RCP 8.5 W/m2 by 2075–2099. All potential distributions for each scenario were then assembled for further analysis. We found that 14 tropical rainforest species have the potential for distribution in 97.4% of the landscape currently occupied by climax vegetation (0.6% of the country). Both climate change scenarios showed a 3.5% reduction in their potential distribution and possible displacement to higher elevation regions. Areas are proposed for tropical rainforest conservation where suitable bioclimatic conditions are expected to prevail.

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1710
Author(s):  
Xiuting Wang ◽  
Wenwen Zhang ◽  
Xin Zhao ◽  
Huiqin Zhu ◽  
Limiao Ma ◽  
...  

Akebia trifoliata (Thunb.) Koidz., Akebia trifoliata subsp. australis (Diels) T. Shimizu and Akebia quinata (Houtt.) Decne. are the source plants of the traditional Chinese medicines AKEBIAE CAULIS and AKEBIAE FRUCTUS, and have high pharmaceutical value. However, the resource reserve of these plants has dramatically declined due to habitat destruction, which has seriously affected their adequate supply and sustainable utilization. A poor knowledge of the potential distribution of these medicinal materials would seriously constrain the protective exploitation of wild resources and the establishment of new cultivations. In this study, based on the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, the maximum entropy model was used to predict the potential distribution of these three Akebia taxa under current and future (2030s, 2050s, 2070s and 2090s) climate conditions. Our findings showed that the potentially suitable areas of these three Akebia taxa were mainly distributed in China at 101.8–121.9° E and 23.5–34.6° N. Temperature played a more significant role than precipitation in affecting the distribution. The dominant bioclimatic variable that affected the distribution of A. trifoliata and A. quinata in China was the minimum temperature of the coldest month (BIO06). For A. trifoliata subsp. australis, the mean diurnal range (BIO02) was the dominant variable influencing its distribution. Compared with current conditions, the moderate- and high-suitability areas of these three Akebia taxa were predicted to shrink towards the core areas, while the low-suitability areas were all observed to increase from the 2030s to the 2090s. With the increase in radiative forcing of SSP, the low-impact areas of these three Akebia taxa showed a decreasing trend as a whole. Our results illustrate the impact of climate change on the distribution of Akebia, and would provide references for the sustainable utilization of Akebia’s resources.


2014 ◽  
Vol 6 (2) ◽  
pp. 263-277 ◽  
Author(s):  
Klaus Schneeberger ◽  
Christian Dobler ◽  
Matthias Huttenlau ◽  
Johann Stötter

The aim of this study is to investigate potential impacts of climate change on the seasonality of runoff in a mountainous watershed, located in the Austrian Alps. In order to consider the full range of possible climate variation, hypothetical climate change scenarios were used to force a hydrological model to simulate runoff time series for potential future climate conditions. The variation of runoff seasonality is illustrated with a three-dimensional representation of daily discharge data, directional statistics of annual flood peaks and the analysis of seasonal occurrence of runoff peaks. The results show that changes in temperature and precipitation patterns could have considerable effects on seasonal runoff variability in the investigated watershed. Generally, a possible increase in temperature may cause an increase in seasonal variability of runoff. Further, annual flood peaks are projected to occur throughout the entire year in the investigated Alpine watershed, whereas moderate high flows may increase in winter (December–February).


2017 ◽  
pp. 189-213
Author(s):  
Nenad Rankovic ◽  
Zoran Poduska ◽  
Dragan Nonic ◽  
Jelena Nedeljkovic ◽  
Mirjana Stanisic

This study examines the influence of some climate elements on the collected quantities of blueberry, wild strawberry and juniper in Serbia. The main objective of the research is to predict the quantity of selected forest fruits depending on the different climate change scenarios (A1Bmin, A1Bmax, A2min and A2max). The general (modeling method), basic (dialectical) and specific scientific methods (induction and deduction, analysis and synthesis, abstraction and concretization) were used. Regression models were used in data processing, where the focus was on the statistical significance of the correlation coefficient in relation to the statistical significance of the parameters. The research found that, in the coming period, with the increase in temperature and precipitation, an increase in the collected amount of wild strawberries and blueberries could be expected, and the decline of juniper. Longer-term forecasts indicate expected growth with wild strawberries and blueberries with a tendency to slow down after 2040, and expected decline with juniper, with the same slow down tendency after 2040.


2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Yingxuan Yin ◽  
Qing He ◽  
Xiaowen Pan ◽  
Qiyong Liu ◽  
Yinjuan Wu ◽  
...  

Pomacea canaliculata is one of the 100 worst invasive alien species in the world, which has significant effects and harm to native species, ecological environment, human health, and social economy. Climate change is one of the major causes of species range shifts. With recent climate change, the distribution of P. canaliculata has shifted northward. Understanding the potential distribution under current and future climate conditions will aid in the management of the risk of its invasion and spread. Here, we used species distribution modeling (SDM) methods to predict the potential distribution of P. canaliculata in China, and the jackknife test was used to assess the importance of environmental variables for modeling. Our study found that precipitation of the warmest quarter and maximum temperature in the coldest months played important roles in the distribution of P. canaliculata. With global warming, there will be a trend of expansion and northward movement in the future. This study could provide recommendations for the management and prevention of snail invasion and expansion.


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Ayse Gul Sarikaya ◽  
◽  
Omer K. Orucu ◽  

Arbutus andrachne L., the strawberry tree, is an evergreen shrub or small tree in the Turkish flora and has broad uses. The wood is used for decorative purposes, packaging, and manufacturing furniture. The fruits are edible and used in treating many kinds of diseases. However, global warming might affect the abundance of this symbolic plant's distribution, especially at higher latitudes. This study was conducted to determine the expected effects of climate change on A. andrachne. For this purpose, Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 were used to expect climate change scenarios for 2050 and 2070, and potential distribution areas of A. andrachne were presented. The results indicated that the distribution of A. andrachne would decrease in the southern regions of Turkey. However, the spread of the species could be expanded in the western and northern areas. It is also expected that there would be potential habitat losses, which would affect the distribution of A. andrachne.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


Sign in / Sign up

Export Citation Format

Share Document