scholarly journals Modeling the Potential Distribution of Three Taxa of Akebia Decne. under Climate Change Scenarios in China

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1710
Author(s):  
Xiuting Wang ◽  
Wenwen Zhang ◽  
Xin Zhao ◽  
Huiqin Zhu ◽  
Limiao Ma ◽  
...  

Akebia trifoliata (Thunb.) Koidz., Akebia trifoliata subsp. australis (Diels) T. Shimizu and Akebia quinata (Houtt.) Decne. are the source plants of the traditional Chinese medicines AKEBIAE CAULIS and AKEBIAE FRUCTUS, and have high pharmaceutical value. However, the resource reserve of these plants has dramatically declined due to habitat destruction, which has seriously affected their adequate supply and sustainable utilization. A poor knowledge of the potential distribution of these medicinal materials would seriously constrain the protective exploitation of wild resources and the establishment of new cultivations. In this study, based on the scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, the maximum entropy model was used to predict the potential distribution of these three Akebia taxa under current and future (2030s, 2050s, 2070s and 2090s) climate conditions. Our findings showed that the potentially suitable areas of these three Akebia taxa were mainly distributed in China at 101.8–121.9° E and 23.5–34.6° N. Temperature played a more significant role than precipitation in affecting the distribution. The dominant bioclimatic variable that affected the distribution of A. trifoliata and A. quinata in China was the minimum temperature of the coldest month (BIO06). For A. trifoliata subsp. australis, the mean diurnal range (BIO02) was the dominant variable influencing its distribution. Compared with current conditions, the moderate- and high-suitability areas of these three Akebia taxa were predicted to shrink towards the core areas, while the low-suitability areas were all observed to increase from the 2030s to the 2090s. With the increase in radiative forcing of SSP, the low-impact areas of these three Akebia taxa showed a decreasing trend as a whole. Our results illustrate the impact of climate change on the distribution of Akebia, and would provide references for the sustainable utilization of Akebia’s resources.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Antonio Fidel Santos-Hernández ◽  
Alejandro Ismael Monterroso-Rivas ◽  
Diódoro Granados-Sánchez ◽  
Antonio Villanueva-Morales ◽  
Malinali Santacruz-Carrillo

The tropical rainforest is one of the lushest and most important plant communities in Mexico’s tropical regions, yet its potential distribution has not been studied in current and future climate conditions. The aim of this paper was to propose priority areas for conservation based on ecological niche and species distribution modeling of 22 species with the greatest ecological importance at the climax stage. Geographic records were correlated with bioclimatic temperature and precipitation variables using Maxent and Kuenm software for each species. The best Maxent models were chosen based on statistical significance, complexity and predictive power, and current potential distributions were obtained from these models. Future potential distributions were projected with two climate change scenarios: HADGEM2_ES and GFDL_CM3 models and RCP 8.5 W/m2 by 2075–2099. All potential distributions for each scenario were then assembled for further analysis. We found that 14 tropical rainforest species have the potential for distribution in 97.4% of the landscape currently occupied by climax vegetation (0.6% of the country). Both climate change scenarios showed a 3.5% reduction in their potential distribution and possible displacement to higher elevation regions. Areas are proposed for tropical rainforest conservation where suitable bioclimatic conditions are expected to prevail.


2007 ◽  
Vol 97 (4) ◽  
pp. 369-378 ◽  
Author(s):  
A.E.A. Stephens ◽  
D.J. Kriticos ◽  
A. Leriche

AbstractThe oriental fruit fly,Bactrocera dorsalis(Hendel), is a major pest throughout South East Asia and in a number of Pacific Islands. As a result of their widespread distribution, pest status, invasive ability and potential impact on market access,B. dorsalisand many other fruit fly species are considered major threats to many countries. CLIMEX™ was used to model the potential global distribution ofB. dorsalisunder current and future climate scenarios. Under current climatic conditions, its projected potential distribution includes much of the tropics and subtropics and extends into warm temperate areas such as southern Mediterranean Europe. The model projects optimal climatic conditions forB. dorsalisin the south-eastern USA, where the principle range-limiting factor is likely to be cold stress. As a result of climate change, the potential global range forB. dorsalisis projected to extend further polewards as cold stress boundaries recede. However, the potential range contracts in areas where precipitation is projected to decrease substantially. The significant increases in the potential distribution ofB. dorsalisprojected under the climate change scenarios suggest that the World Trade Organization should allow biosecurity authorities to consider the effects of climate change when undertaking pest risk assessments. One of the most significant areas of uncertainty in climate change concerns the greenhouse gas emissions scenarios. Results are provided that span the range of standard Intergovernmental Panel on Climate Change scenarios. The impact on the projected distribution ofB. dorsalisis striking, but affects the relative abundance of the fly within the total suitable range more than the total area of climatically suitable habitat.


2011 ◽  
Vol 2 (2) ◽  
pp. 493-529 ◽  
Author(s):  
M. Hirschi ◽  
S. Stoeckli ◽  
M. Dubrovsky ◽  
C. Spirig ◽  
P. Calanca ◽  
...  

Abstract. As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1 % on average today to over 60 % in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g., insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.


2012 ◽  
Vol 3 (1) ◽  
pp. 33-47 ◽  
Author(s):  
M. Hirschi ◽  
S. Stoeckli ◽  
M. Dubrovsky ◽  
C. Spirig ◽  
P. Calanca ◽  
...  

Abstract. As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.


2021 ◽  
Vol 13 (7) ◽  
pp. 3885
Author(s):  
Christos Spyrou ◽  
Michael Loupis ◽  
Νikos Charizopoulos ◽  
Ilektra Apostolidou ◽  
Angeliki Mentzafou ◽  
...  

Nature-based solutions (NBS) are being deployed around the world in order to address hydrometeorological hazards, including flooding, droughts, landslides and many others. The term refers to techniques inspired, supported and copied from nature, avoiding large constructions and other harmful interventions. In this work the development and evaluation of an NBS applied to the Spercheios river basin in Central Greece is presented. The river is susceptible to heavy rainfall and bank overflow, therefore the intervention selected is a natural water retention measure that aims to moderate the impact of flooding and drought in the area. After the deployment of the NBS, we examine the benefits under current and future climate conditions, using various climate change scenarios. Even though the NBS deployed is small compared to the rest of the river, its presence leads to a decrease in the maximum depth of flooding, maximum velocity and smaller flooded areas. Regarding the subsurface/groundwater storage under current and future climate change and weather conditions, the NBS construction seems to favor long-term groundwater recharge.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 460
Author(s):  
Amna M. Al Ruheili ◽  
Alaba Boluwade ◽  
Ali M. Al Subhi

Witches’ broom disease has led to major losses in lime and alfalfa production in Oman. This paper identifies bioclimatic variables that contribute to the prediction of distribution of witches’ broom disease in current and future climatic scenarios. It also explores the expansion, reduction, or shift in the climatic niche of the distribution of the disease across the different geographical areas of the entire country (309,501 km²). The maximum entropy model (MaxEnt) and geographical information system were used to investigate the potential suitability of habitats for the phytoplasma disease. This study used current (1970–2000) and future projected climatic scenarios (2021–2040, 2041–2060, 2061–2080, and 2081–2100) to model the distribution of phytoplasma for lime trees and alfalfa in Oman. Bioclimatic variables were downloaded from WorldClim with ± 60 occurrence points for lime trees and alfalfa. The area under the curve (AUC) was used to evaluate the model’s performance. Quantitatively, the results showed that the mean of the AUC values for lime (16SrII-B) and alfalfa (16SrII-D) future distribution for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100 were rated as “excellent”, with the values for the specified time periods being 0.859, 0.900, 0.931, and 0.913 for 16SrII-B; and 0.826, 0.837, 08.58, and 0.894 for 16SrII-D respectively. In addition, this study identified the hotspots and proportions of the areas that are vulnerable under the projected climate-change scenarios. The area of current (2021–2040) highly suitable distribution within the entire country for 16SrII-D was 19474.2 km2 (7.1%), while for 16SrII-B, an area of 8835 km2 (3.2%) was also highly suitable for the disease distribution. The proportions of these suitable areas are very significant from the available arable land standpoint. Therefore, the results from this study will be of immense benefit and will also bring significant contributions in mapping the areas of witches’ broom diseases in Oman. The results will equally aid the development of new strategies and the formulation of agricultural policies and practices in controlling the spread of the disease across Oman.


Author(s):  
Diana Hernandez Langford ◽  
Jaime Escoto Moreno ◽  
Joaquín Sosa Ramírez

Aim: Mexican hand tree Chiranthodendron pentadactylon is an evergreen temperate tree species restricted to cloud forests and pine-oak forests of southern Mexico, Guatemala and possibly Honduras. Climate is believed to significantly contribute to the species establishment, viability and distribution. Insights into the impact of climate change on the species potential distribution throughout time were approached by ecological niche modeling tools. Location: Southern Mexico, Guatemala and Honduras. Methods: Past (Last Interglacial 120-140 KA, Last Glacial Maximum 22 KA, Mid-Holocene 6 KA), historical (1910-2009) and future (2021-2040, 2041-2060, 2061-2080 and 2081-2100) potential distributions and corresponding environmental suitability were modelled using the Maximum Entropy algorithm. Current (historical) models were based on the most up to date historical environmental variables and constituted the baseline for past and future projections. Past predictions are revisited in a phylogeographic context. Future predictions were made for four different emissions scenarios. Results: Increase in potential distribution range comes about during cold and humid periods but higher suitability possibly relates to humid conditions. Potential distribution alongside environmental suitability diminishes during warm and dry periods. Future climate change implies warmer periods whence environmental suitability declines following a linear trend. Main conclusions: Future warmer conditions are predicted to linearly reduce environmental suitability throughout time. Biotic and anthropogenic factors further threaten the species distribution. Demographic trends and genetic diversity estimated through a recent phylogeographic study, complement the statement that populations viability is increasingly being threatened by current and future climate change, underscoring the need for the implementation of conservation actions.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1464
Author(s):  
Qian Zhao ◽  
Yuan Zhang ◽  
Wen-Na Li ◽  
Bang-Wen Hu ◽  
Jia-Bin Zou ◽  
...  

Coptis chinensis Franch. (Ranales: Ranunculaceae) is a perennial species with high medicinal value. Predicting the potentially geographical distribution patterns of C. chinensis against the background of climate change can facilitate its protection and sustainable utilization. This study employed the optimized maximum entropy model to predict the distribution patterns and changes in potentially suitable C. chinensis’ regions in China under multiple climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) across different time periods (1970–2000, 2050s, 2070s, and 2090s). The results revealed that the currently potentially suitable regions of C. chinensis span an area of 120.47 × 104 km2, which accounts for 12.54% of China’s territory. Among these areas, the low, moderate, and highly suitable regions are 80.10 × 104 km2, 37.16 × 104 km2, and 3.21 × 104 km2, respectively. The highly suitable regions are primarily distributed in Chongqing, Guizhou, Zhejiang, Hubei, and Hunan Provinces. Over time, the potentially suitable regions of C. chinensis are predicted to shrink. Furthermore, our study revealed that the relatively low impact areas of C. chinensis were mainly distributed in Yunnan, Guizhou, Hubei, Chongqing, and other Provinces. Centroid transfer analysis indicated that except for SSP1-2.6, the center of the potentially suitable region of C. chinensis showed a trend of gradual transfer to the northwest and high-altitude areas.


2007 ◽  
Vol 56 (4) ◽  
pp. 27-33 ◽  
Author(s):  
B. van den Hurk ◽  
A.K. Tank ◽  
G. Lenderink ◽  
A. van Ulden ◽  
G.J. van Oldenborgh ◽  
...  

A new set of climate change scenarios for 2050 for the Netherlands was produced recently. The scenarios span a wide range of possible future climate conditions, and include climate variables that are of interest to a broad user community. The scenario values are constructed by combining output from an ensemble of recent General Climate Model (GCM) simulations, Regional Climate Model (RCM) output, meteorological observations and a touch of expert judgment. For temperature, precipitation, potential evaporation and wind four scenarios are constructed, encompassing ranges of both global mean temperature rise in 2050 and the strength of the response of the dominant atmospheric circulation in the area of interest to global warming. For this particular area, wintertime precipitation is seen to increase between 3.5 and 7% per degree global warming, but mean summertime precipitation shows opposite signs depending on the assumed response of the circulation regime. Annual maximum daily mean wind speed shows small changes compared to the observed (natural) variability of this variable. Sea level rise in the North Sea in 2100 ranges between 35 and 85 cm. Preliminary assessment of the impact of the new scenarios on water management and coastal defence policies indicate that particularly dry summer scenarios and increased intensity of extreme daily precipitation deserves additional attention in the near future.


2019 ◽  
Vol 7 (2) ◽  
pp. 140
Author(s):  
Maya Amalia Achyadi ◽  
Koichiro Ohgushi ◽  
Toshihiro Morita

Increasing rice consumption demand in Indonesia has provided serious problems such as food insecurity. Being the major staple food, rice production is the main priority of medium and long term development planning in Indonesia. Local rice production is strongly affected by climate conditions, especially in South Kalimantan. Nowadays, the world must adjust to climate change. One of significant effects of changing climate on agriculture is related to productivity. Evapotranspiration is the major cause of loss of water needed, for agricultural requirements. The crop requires effective irrigation system with adequate water amount. The main objective of this research is to analyze the water requirements for the irrigation units in Barito Kuala, South Kalimantan concerning local rice cultivation under the climate change scenarios. Supposed rainfall during the 2050s and 2090s are obtained from four downscaled circulated models and one model for projected temperature under CMIP5 with RCPs 8.5 scenario. Penman-Monteith method was used  to calculate the evapotranspiration value. Based on future effective rainfall water requirement is estimated.  The result shows the impact of climate change on the water irrigation requirement of local paddy cultivation are 56% and 25 % higher than current condition in July and September October respectively.


Sign in / Sign up

Export Citation Format

Share Document