scholarly journals Synergistic Ability of Chitosan and Trichoderma harzianum to Control the Growth and Discolouration of Common Sapstain Fungi of Pinus radiata

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 542
Author(s):  
Tripti Singh ◽  
Colleen Chittenden

An environmentally compatible method for controlling sapstain fungi in wood was evaluated, using a combination of chitosan and an albino strain of Trichoderma harzianum, a biological control agent (BCA). The growth and penetration into the wood of the sapstain fungi Ophiostoma piceae, Leptographium procerum, and Sphaeropsis sapinea were assessed in radiata pine wafers treated with chitosan and BCA, both alone and in combination. Several mycological and microscopic techniques were used, including a gfp (green fluorescent protein) transformed strain of O. piceae for assessing the depth of penetration in the wood samples. The synergy between the chitosan and BCA was evident, and for two tested fungi, only the combination of chitosan and BCA afforded protection. The synnemata (recognized by erect conidiogenous cells bearing conidia) was observed on the surface of the wafers inoculated with L. procerum and O. piceae, but the hyphae were unable to penetrate and melanise. The results suggest that the limited ability of chitosan to penetrate deeply into the wood was compensated by the fast growth of T. harzianum in the inner wood.

2004 ◽  
Vol 94 (12) ◽  
pp. 1383-1389 ◽  
Author(s):  
K. A. Orr ◽  
G. R. Knudsen

One drawback of traditional methods for fungal biomass measurement is the inability to distinguish biomass of an introduced fungus from that of the indigenous microbial community in nonsterile soil. We quantified biomass of a specific fungal biological control agent in nonsterile soil using epifluorescence microscopy and image analysis of green fluorescent protein (GFP)-expressing Trichoderma harzianum (ThzID1-M3). Numbers of colony forming units on a semiselective medium were compared with biomass estimates from image analysis, after ThzID1-M3 was incubated in soil that either remained moist (-0.05 MPa) for 14 to 21 days or remained moist for approximately 5 days and then was allowed to dry to <-3.0 MPa. Recovery of significant numbers of ThzID1-M3 propagules lagged approximately 3 days behind initiation of hyphal growth. Reductions in both colony counts and biomass were observed over time when soil was allowed to dry. However, in soil that remained moist, colony counts increased over a 14- to 21-day period even though biomass declined after approximately 3 to 5 days. Our results confirm that use of GFP, along with epifluorescence microscopy, is a useful tool to distinguish active hyphal biomass, the form of the fungus that is functional for biological control, from inactive propagules such as conidia or chlamydospores that are enumerated by plate counts.


2017 ◽  
Vol 16 (2) ◽  
pp. 115
Author(s):  
Johanna Taribuka ◽  
Christanti Sumardiyono ◽  
Siti Muslimah Widyastuti ◽  
Arif Wibowo

Exploration and identification of endophytic Trichoderma in banana. Endophytic fungi Trichoderma is an organism that can used as biocontrol agent. This study aims to isolate and identify endophytic Trichoderma in roots of healthy banana plants from three districts in Yogyakarta, which will be used as biological control agent against the pathogen Fusarium oxysporum f.sp. cubense. Isolation was conducted using TSM (Trichoderma Selective Medium). We obtained six isolates of endophytic Trichoderma spp., i.e., Swn-1, Swn-2, Ksn, Psr-1, Psr-2, and Psr-3. Molecular identification was done by using ITS1 and ITS2 primer pain and sequenced. The sequence of DNA obtained was analysed and compared with NCBI database by using BLAST-N programe. The results showed that all isolates were amplified at 560-bp. Phylogenetic analysis showed that isolates Swn-1, Swn-2 and Psr-1 are homologous to Trichoderma harzianum, isolate Ksn homologous to Trichoderma asperrellum, isolate Psr-2 homologous to Trichoderma gamsii, and isolate Psr-3 homologous to Trichoderma koningiopsis, with the homologous value of 99%.


2019 ◽  
Vol 3 (2) ◽  
pp. 202-212
Author(s):  
Rina Sriwati ◽  
Tjut Chamzhurni ◽  
Alfizar Alfizar ◽  
Bonny PW Soekarno ◽  
Vina Maulidia ◽  
...  

Molleculler study was conducted to identify several species of Trichoderma isolate from several  plant (Pine, Cacao, Gliceria, Nutmeg, Bamboo, Coffee, Potato).  The growth of eight species Trichodermaafter pelleting formulation has been observed. Pellet Trichoderma harzianum have good ability to growth on PDA medium after 4 weeks storage. Base on their mycelium diameter growth on PDA, T. harzianum have selected as potential species on pellet formulation growth.  Several dose of pellet formulation have been applied for controlling Phythopthora disease. The application of T. harzianum pellets in the form of a 2 g / 100 ml (S1) suspension effective in inhibiting the development of Phytophthora sp in cacao seedlings, when the higher concentrations of T. harzianum pellets applied to cacao seeds,the disease severity increase. Pellet Trichoderma could be use as biological control agent of cacao seedling in certain dosage.


2000 ◽  
Vol 66 (2) ◽  
pp. 810-815 ◽  
Author(s):  
Yeoung-Seuk Bae ◽  
Guy R. Knudsen

ABSTRACT Trichoderma harzianum was cotransformed with genes encoding green fluorescent protein (GFP), β-glucuronidase (GUS), and hygromycin B (hygB) resistance, using polyethylene glycol-mediated transformation. One cotransformant (ThzID1-M3) was mitotically stable for 6 months despite successive subculturing without selection pressure. ThzID1-M3 morphology was similar to that of the wild type; however, the mycelial growth rate on agar was reduced. ThzID1-M3 was formed into calcium alginate pellets and placed onto buried glass slides in a nonsterile soil, and its ability to grow, sporulate, and colonize sclerotia of Sclerotinia sclerotiorum was compared with that of the wild-type strain. Wild-type and transformant strains both colonized sclerotia at levels above those of indigenous Trichoderma spp. in untreated controls. There were no significant differences in colonization levels between wild-type and cotransformant strains; however, the presence of the GFP and GUS marker genes permitted differentiation of introducedTrichoderma from indigenous strains. GFP activity was a useful tool for nondestructive monitoring of the hyphal growth of the transformant in a natural soil. The green color of cotransformant hyphae was clearly visible with a UV epifluorescence microscope, while indigenous fungi in the same samples were barely visible. Green-fluorescing conidiophores and conidia were observed within the first 3 days of incubation in soil, and this was followed by the formation of terminal and intercalary chlamydospores and subsequent disintegration of older hyphal segments. Addition of 5-bromo-4-chloro-3-indolyl-β-d-glucuronic acid (X-Gluc) substrate to recovered glass slides confirmed the activity of GUS as well as GFP in soil. Our results suggest that cotransformation with GFP and GUS can provide a valuable tool for the detection and monitoring of specific strains of T. harzianum released into the soil.


2006 ◽  
Vol 96 (5) ◽  
pp. 526-533 ◽  
Author(s):  
Chantal Morin ◽  
Philippe Tanguay ◽  
Colette Breuil ◽  
Dian-Qing Yang ◽  
Louis Bernier

We recovered a spontaneous albino strain from ascospores of Ceratocystis resinifera, a sapstain fungus that grows deeply and rapidly in freshly felled conifer trees. This albino strain, named Kasper, was tested for its ability to prevent discoloration of spruce sapwood caused by wild-type sapstain fungi and compared with Cartapip 97, a commercially available biological control agent of sapstain in lodgepole pine and red pine logs. In a laboratory trial, Kasper reduced sapstain of white spruce logs as much as 94.4% and was more efficient than Cartapip 97. In field trials conducted in an area north of Québec City, Kasper reduced sapstain of black spruce as much as 80%. In three of four field trials, Kasper was significantly more efficient than Cartapip 97 in reducing sapstain development. The exception was encountered in a 2003 trial conducted in a sawmill yard where Kasper did not reduce sapstain. In a field trial conducted in western Canada, at Aleza Lake forest near Prince George, Kasper almost totally prevented the development of sapstain, even after 24 weeks. These results suggest albino strains derived from C. resinifera might be an additional source of potential biocontrol agents against sapstain.


2003 ◽  
Vol 11 (1) ◽  
pp. 3-4
Author(s):  
Stephen W. Carmichael

Temporal resolution has long been a challenge to microscopists. Certainly, spatial resolution has occupied center stage, but we're all concerned about what happens over time in a biologic system, for example, a cell. Tags such as green fluorescent protein (GFP) have been used with confocal microscopy and other light microscopic techniques to achieve outstanding temporal resolution, but good spatial and temporal resolution have proven to be difficult to achieve simultaneously. This has been accomplished in a remarkable study by Guido Gaietta, Thomas Deerinck, Stephen Adams, James Bouwer, Oded Tour, Dale Laird, Gina Sosinsky, Roger Tsien, and Mark Ellisman, who demonstrated a pulse-chase technique that correlates with both fluorescence and electron microscopy.


2011 ◽  
Vol 102 (3) ◽  
pp. 2793-2798 ◽  
Author(s):  
Robert Beaulieu ◽  
Rubén López-Mondéjar ◽  
Fabio Tittarelli ◽  
Margarita Ros ◽  
José Antonio Pascual

BioControl ◽  
2011 ◽  
Vol 57 (5) ◽  
pp. 687-696 ◽  
Author(s):  
Alessandro Vitale ◽  
Gabriella Cirvilleri ◽  
Ivana Castello ◽  
Dalia Aiello ◽  
Giancarlo Polizzi

Sign in / Sign up

Export Citation Format

Share Document