scholarly journals Bioprotection of Spruce Logs Against Sapstain Using an Albino Strain of Ceratocystis resinifera

2006 ◽  
Vol 96 (5) ◽  
pp. 526-533 ◽  
Author(s):  
Chantal Morin ◽  
Philippe Tanguay ◽  
Colette Breuil ◽  
Dian-Qing Yang ◽  
Louis Bernier

We recovered a spontaneous albino strain from ascospores of Ceratocystis resinifera, a sapstain fungus that grows deeply and rapidly in freshly felled conifer trees. This albino strain, named Kasper, was tested for its ability to prevent discoloration of spruce sapwood caused by wild-type sapstain fungi and compared with Cartapip 97, a commercially available biological control agent of sapstain in lodgepole pine and red pine logs. In a laboratory trial, Kasper reduced sapstain of white spruce logs as much as 94.4% and was more efficient than Cartapip 97. In field trials conducted in an area north of Québec City, Kasper reduced sapstain of black spruce as much as 80%. In three of four field trials, Kasper was significantly more efficient than Cartapip 97 in reducing sapstain development. The exception was encountered in a 2003 trial conducted in a sawmill yard where Kasper did not reduce sapstain. In a field trial conducted in western Canada, at Aleza Lake forest near Prince George, Kasper almost totally prevented the development of sapstain, even after 24 weeks. These results suggest albino strains derived from C. resinifera might be an additional source of potential biocontrol agents against sapstain.

Plant Disease ◽  
2021 ◽  
Author(s):  
Leslie Amanda Holland ◽  
Renaud Travadon ◽  
Daniel P. Lawrence ◽  
Mohamed Taieb Nouri ◽  
Florent P Trouillas

Almond trunk and branch canker diseases constitute a major cause of tree mortality in California. Numerous fungal pathogens have been associated with these canker diseases and pruning wounds act as major infection courts. Prior to this study, there were no products registered in California for the management of these diseases. In this study, fungicidal products including synthetic chemistries, biocontrols, paint and a sealant were evaluated for preventing fungal pathogen infection via pruning wounds. In four field trials conducted over two dormant seasons, sixteen pruning wound treatments were tested using hand-held spray applications, against five almond canker pathogens, namely Botryosphaeria dothidea, Neofusicoccum parvum, Cytospora sorbicola, Ceratocystis destructans, and Eutypa lata. The fungicide thiophanate-methyl (Topsin M) provided 82% overall disease prevention against four fungal pathogens. The biological control agent, Trichoderma atroviride SC1 (Vintec), tested at three application rates, resulted in 90 to 93% protection of pruning wounds in field trials, and for individual pathogens ranged from 81-100% protection for the three rates. At the time of this publication, Vintec is being considered for registration as a biological control product for the prevention of almond canker diseases, while Topsin M is recommended to growers for the prevention of almond canker diseases. This research indicates that effective protection of pruning wounds from infection by almond canker pathogens can be achieved with a one-time spray application of thiophanate-methyl or the biocontrol, T. atroviride SC1 (recommended 2 g/liter) after pruning.


2021 ◽  
Author(s):  
Shuen-Huang Tsai ◽  
Yu-Ting Chen ◽  
Yu-Liang Yang ◽  
Bo-Yi Lee ◽  
Chien-Jui Huang ◽  
...  

Paenibacillus polymyxa is a beneficial bacterium for plant health. Paenibacillus polymyxa TP3 exhibits antagonistic activity toward Botrytis cinerea and alleviates gray mold symptoms on the leaves of strawberry plants. Moreover, suppression of gray mold on the flowers and fruits of strawberry plants in field trials, including vegetative cells and endospores, was demonstrated, indicating the potential of strain TP3 as a biological control agent. To examine the anti-B. cinerea compounds produced by P. polymyxa TP3, matrix‐assisted laser‐desorption/ionization time‐of‐flight mass spectrometry was performed and fusaricidin-corresponding mass spectra were detected. Moreover, fusaricidin-related signals appeared in imaging mass spectrometry of TP3 when confronted with B. cinerea. By using liquid chromatography-mass spectrometry-based molecular networking approach, several fusaricidins were identified including a new variant of m/z 917.5455 with serine in the first position of the hexapeptide. Via advanced mass spectrometry and network analysis, fusaricidin-type compounds produced by P. polymyxa TP3 were efficiently disclosed and were presumed to play roles in the antagonism against gray mold pathogen B. cinerea.


2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


2016 ◽  
Vol 69 ◽  
pp. 258-262
Author(s):  
B. Smith ◽  
S.G. Casonato ◽  
A. Noble ◽  
G. Bourd?t

Californian thistle (Cirsium arvense) is a problematic weed particularly in permanent pastures The fungus Sclerotinia sclerotiorum has potential as a bioherbicide to control this weed but its variable efficacy in historical field trials suggest that there are differences in susceptibility to S sclerotiorum within the species To test this hypothesis the responses of 32 New Zealand provenances of C arvense to a foliageapplied myceliumonbarley preparation of S sclerotiorum were compared under common conditions Significant differences between provenances were found supporting the hypothesis that there is variation within C arvense in New Zealand in its susceptibility to S sclerotiorum Further work will examine differences in the efficacy of fungal isolates against different C arvense provenances


2021 ◽  
Vol 11 (20) ◽  
pp. 9445
Author(s):  
Maria Zottele ◽  
Johanna Mayerhofer ◽  
Hannah Embleton ◽  
Katharina Wechselberger ◽  
Jürg Enkerli ◽  
...  

Inundative mass application of Metarhizium brunneum BIPESCO 5 (Hypocreales, Clavicipitaceae) is used for the biological control of Diabrotica v. virgifera (Coleoptera, Chrysomelidae). Long-term field trials were performed in three Austrian maize fields—with different cultivation techniques and infestation rates—in order to evaluate the efficacy of the treatment to control the pest larvae. In addition, the indigenous Metarhizium spp. population structure was assessed to compare the different field sites with BIPESCO 5 mass application. Annual application of the product Granmet-PTM (Metarhizium colonized barley kernels) significantly increased the density of Metarhizium spp. in the treated soil above the upper natural background level of 1000 colony forming units per gram dry weight soil. Although a decrease in the pest population over time was not achieved in heavily infested areas, less damage occurred in treated field sites in comparison to control sites. The Metarhizium population structure was significantly different between the treated field sites. Results showed that inundative mass application should be repeated regularly to achieve good persistence of the biological control agent, and indicated that despite intensive applications, indigenous populations of Metarhizium spp. can coexist in these habitats. To date, crop rotation remains the method of choice for pest reduction in Europe, however continuous and preventive application of M. brunneum may also present an alternative for the successful biological control of Diabrotica.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 542
Author(s):  
Tripti Singh ◽  
Colleen Chittenden

An environmentally compatible method for controlling sapstain fungi in wood was evaluated, using a combination of chitosan and an albino strain of Trichoderma harzianum, a biological control agent (BCA). The growth and penetration into the wood of the sapstain fungi Ophiostoma piceae, Leptographium procerum, and Sphaeropsis sapinea were assessed in radiata pine wafers treated with chitosan and BCA, both alone and in combination. Several mycological and microscopic techniques were used, including a gfp (green fluorescent protein) transformed strain of O. piceae for assessing the depth of penetration in the wood samples. The synergy between the chitosan and BCA was evident, and for two tested fungi, only the combination of chitosan and BCA afforded protection. The synnemata (recognized by erect conidiogenous cells bearing conidia) was observed on the surface of the wafers inoculated with L. procerum and O. piceae, but the hyphae were unable to penetrate and melanise. The results suggest that the limited ability of chitosan to penetrate deeply into the wood was compensated by the fast growth of T. harzianum in the inner wood.


1996 ◽  
Vol 26 (3) ◽  
pp. 360-367 ◽  
Author(s):  
P.G. Zhang ◽  
J.C. Sutton ◽  
A.A. Hopkin

Inoculum concentration and time of application of Gliocladiumroseum Bainier were examined in relation to sporulation of Botrytiscinerea Pers.:Fr. in container-grown seedlings of black spruce (Piceamariana (Mill.) BSP) in greenhouses. Gliocladiumroseum concentrations ranging from 102 to 108 conidia/mL water plus surfactant, applied four times at 2- to 4-week intervals starting when the seedling canopies closed, increasingly suppressed the proportion of seedlings with sporulation of B. cinerea (YI) during early and midphases of epidemics, and the proportion of shoot length with sporulation of the pathogen (YS) throughout the epidemics. Concentrations of 106 and 108 conidia/mL suppressed YI and YS as or more effectively than did chlorothalonil (1.4 g active ingredient/L water) applied at the same times. One application of G. roseum (106 conidia/mL) when the seedling canopies were closing suppressed YS as effectively as did programs of two to six applications of the antagonist, or six of chlorothalonil, all at 1- and 2-week intervals beginning at canopy closure. The various programs generally did not affect YI. Logistic and Gompertz regression models were developed that adequately described YI and YS as functions of inoculum concentration and (or) time. It is concluded that G. roseum has potential as a biological control agent against B. cinerea in production systems of black spruce seedlings.


2010 ◽  
Vol 63 ◽  
pp. 224-228 ◽  
Author(s):  
R.J. Townsend ◽  
T.L. Nelson ◽  
T.A. Jackson

Manuka beetles (Pyronota sp; Scarabaeidae) are serious and persistent pests of dairy pastures on Cape Foulwind Westport When a selection of scarabactive fungal isolates were tested against 3rd instar larvae of two Pyronota species a locally sourced Beauveria brongniartii (F636) isolate consistently achieved the fastest and highest levels of larval mortality Topical application of F636 caused an average of 80 larval mortality 6 weeks posttreatment Mortality was shown to be dose rate dependent for both Pyronota species When treatments were applied by incorporating rice grains colonised by the fungus into soil simulating field application F636 again produced the fastest and highest levels of larval mortalities averaging 70 6 weeks postapplication Mortalities of both Pyronota species reached 100 after 8 weeks when the assay medium was a grey sand based soil (ex Cape Foulwind) Isolate F636 shows promise as a biological control agent for this pest and field trials have been carried out in the autumn of 2010


2021 ◽  
Vol 26 (2) ◽  
pp. 496-508
Author(s):  
Firdevs Ersin ◽  
Ferit Turanli ◽  
Ibrahim Cakmak

Typhlodromus recki (Acari: Phytoseiidae) was collected from aubergines, pepper, black nightshade and jimsonweed plants infested with spider mites from a pesticide-free vegetable garden in Denizli, Turkey. The biology and life table parameters for T. recki feeding on Tetranychus urticae (Acari: Tetranychidae) at different temperatures (15, 20, 25, 30 and 35 °C) were determined. The results showed that total preadult periods of T. recki at 15, 20, 25, 30 and 35 °C were 19.6±0.51, 9.4±0.16, 7.6±0.14, 5.7±0.14 and 4.5±0.08 days, respectively. The longest oviposition period was 23.5 days at 20 °C. Total fecundity of T. recki significantly differed between the constant temperatures and the highest was observed at 20 °C (28.6 eggs/female) and 25°C (23.5 eggs/female). Although females survived for 26 days at 35 °C, only four females laid eggs for 1 day. Thus, 35 °C is not suitable for the reproduction of T. recki. Total longevity of female was the longest at 15°C (59.5 days) and 20 °C (51.3 days) whereas male total longevity was the longest at 15°C (53.2 days). The intrinsic rate of increase (r) and finite rate of increase (λ) were numerically the highest at 30 °C (0.17 and 1.18 d-1), but there was no statistical difference observed between 25 and 30 °C for both r and λ values. The net productive rate was significantly highest at 20, 25 and 30 °C. The longest mean generation time occurred at 15 °C (42.6 days) and the shortest was at 35 °C (8.0 days). After some field trials, Typhlodromus recki could potentially be considered in the biological control agent of T. urticae.


1990 ◽  
Vol 122 (5) ◽  
pp. 921-934 ◽  
Author(s):  
F.W. Quednau

AbstractFrom 1976 to 1978, 1300 mated females of Olesicampe geniculatae Quednau and Lim were released near Quebec City during a severe infestation of the mountain ash sawfly, Pristiphora geniculata (Hartig). Both cage and open releases were made. The interactions among the mountain ash sawfly, the imported primary parasite O. geniculatae, and the indigenous hyperparasite Mesochorus globulator (Thunb.), and the effect of O. geniculatae on the host population during and after the establishment phase, are reported. In 1984, O. geniculatae was recovered from all over southern Quebec. Parasitism ranged from 6 to 94%. Concurrently, infestation levels by the mountain ash sawfly declined significantly, and since 1985, the insect has almost disappeared in Quebec. With an annual spread of about 50 km per year after successful establishment, O. geniculatae now covers an area 1000 km in diameter. No major infestation by the mountain ash sawfly has been recorded in Quebec during the past 7 years. The introduction of O. geniculatae is rated as a complete success in classical biological control.


Sign in / Sign up

Export Citation Format

Share Document